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The State of Greenhouse Gases in the Atmosphere
Based on Global Observations through 2024

The levels of the three most abundant long-lived greenhouse gases (LLGHGs), carbon dioxide
(CO,), methane (CH,) and nitrous oxide (N,0O), reached new records in 2024. From 2023 to 2024,
CO, in the global surface atmosphere increased by 3.5 ppm," the largest one-year increase since
modern measurements began in 1957. This increase was driven by continued fossil CO, emissions,
enhanced fire emissions and reduced terrestrial/ocean sinks in 2024, which could signal a climate
feedback. Given the dominant role of increasing atmospheric CO, in global climate change ,
achieving net-zero anthropogenic CO, emissions must be the focus of climate action. Sustaining
and expanding greenhouse gas monitoring is critical to supporting such efforts.

Carbon dioxide is the dominant LLGHG driving global
climate change today and has been throughout Earth’s
history . Atmospheric CO, continued to increase in
2024, with no sign of slowing down. Globally averaged
CO, at the Earth’s surface reached 423.9 ppm in 2024.
CO, growth rates accelerated significantly from an
average of 0.8 ppm per year in the 1960s to 2.4 ppm per
year in the decade from 2011 to 2020 (Figure 1), a direct
response to increasing human emissions. From 2023 to
2024, CO, in the global surface atmosphere increased
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by 3.5 ppm; this was the largest one-year increase in the
modern measurement record, exceeding the previous
record of 3.3 ppm from 2015 to 2016 and surpassing the
increase of 2.4 ppm from 2022 to 2023 by a large margin.

Atmospheric CO, levels result from the net difference
between cumulative carbon emissions to the atmosphere
and temporary removals by terrestrial ecosystems and
the oceans. Since 1960, humans have emitted 500 + 50
gigatons of carbon (GtC) to the atmosphere through

Figure 1. Increases in successive annual means of atmospheric CO,, calculated from observations from the National Oceanic and Atmospheric
Administration (NOAA) network (a subset of the remote marine surface sites of the WMO Global Atmosphere Watch (GAW) network) for the

period 1980-2024  and from Scripps Institution of Oceanography (S10) Mauna Loa and South Pole measurements for the period 1960-1979
The 0.1 ppm/yr difference between WMO's (3.5 ppm/yr) and NOAA's (3.4 ppm/yr) CO, growth rates for 2023-2024 reflects differences in station
selection and averaging approach.



fossil fuel burning . About half of the total carbon
dioxide emitted to the atmosphere has been transferred
to the Earth’s land ecosystems and oceans; however,
this storage is not permanent. As global temperatures
rise, the oceans absorb less CO, because of decreased
solubility at higher temperatures . Extreme droughts
may become more frequent and put global forests and
grasslands under stress, which can also reduce net CO,
uptake

Global fossil CO, emissions were almost static during
2023-2024 at the record level of 10.2 + 0.5 GtC/yr

The global terrestrial ecosystems and global oceans
are likely responsible for the additional 1.1 ppm/yr
(equivalent to 2.34 GtC) in CO, growth compared to
2022-2023. The global temperature in 2024 was the
highest recorded in the observational record dating back
to 1850, breaking the record previously set in 2023. For
the first time, it passed the significant 1.5 °C mark relative
to the pre-industrial period, a result of long-term global
warming combined with additional heat from the El Nino
event in 2023-2024 . El Nino is the warm phase of the
El Nino—Southern Oscillation (ENSO) weather pattern,
often associated with abnormal weather, such as strong
storms in some regions and droughts or flooding in others.
These changes alter regional temperature and precipitation
patterns, which in turn influence photosynthetic CO,
uptake, respiratory CO, release and the frequency and
magnitude of fires . The oceans may account for a
small fraction of the additional carbon dioxide in 2024, on
the order of 0.3 GtC , as record-breaking sea-surface
temperatures in 2023 persisted into 2024. However, the
majority of the 2024 anomaly arose from decreased net
ecosystem carbon uptakes and increased fire emissions,

Executive summary

The latest analysis of observations from the WMO
Global Atmosphere Watch (GAW) in situ observational
network shows that the globally averaged surface
concentrations!? for carbon dioxide (CO,), methane (CH,)
and nitrous oxide (N,O) reached unprecedented highsin
2024, with CO, at 423.9+0.2 ppm, CH, at 1942+2 ppb®
and N,O at 338.0+0.1 ppb. These values constitute,
respectively, 152%, 266% and 125% of pre-industrial
(before 1750) levels. The record increase in CO, from
2023 to 2024 was most likely due to a combination of
natural variability and continued emissions of fossil fuel
CO,. For CH,, the increase from 2023 to 2024 was lower
than that observed from 2022 to 2023 and also lower
than the average annual growth rate over the last decade
(2014-2023). For N, 0O, the increase from 2023 to 2024
was lower than that observed from 2022 to 2023 and
slightly lower than the average annual growth rate over
the last decade. The National Oceanic and Atmospheric
Administration (NOAA) Annual Greenhouse Gas Index
(AGGI) [13] shows that from 1990 to 2024, radiative

as estimated by the preliminary 2025 analysis using the 14
global inverse models included in the 2025 Global Carbon
Budget , which use CO, measurements, including those
from the GAW Programme. The Amazon and Southern
Africa experienced record-high fire activities in 2023-2024,
as drought conditions were severe in several land regions
(see the discussion of fire carbon emissions in 2024 in the
insert). There is a significant concern that terrestrial and
ocean CO, sinks are becoming less effective, which will
increase the fraction of anthropogenic CO, that stays in
the atmosphere, thereby accelerating global warming.
Sustaining and enhancing greenhouse gas monitoring
is even more critical now to understand these feedbacks
and to provide the information needed to inform and
monitor climate action.

Current CO, emissions to the atmosphere not only
impact the global climate today but will continue to do
so for millennia, and ongoing CO, emissions will ensure
that warming continues indefinitely. The removal of
anthropogenic CO, from the atmosphere depends on
exchanges among reservoirs on timescales ranging from
years (surface ocean) to hundreds of thousands of years
(weathering). The slowed uptake of anthropogenic CO,
emissions within the global carbon cycle is exacerbated
by the slow uptake of heat by the deep oceans , SO
once CO, is emitted to the atmosphere, it affects climate
indefinitely . This is different from methane (CH,),
whose atmospheric lifetime is about nine years due
to its removal by chemical oxidation. While reducing
CH, emissions is useful and necessary, climate action
urgently needs to focus on reducing fossil fuel CO,
emissions, which represent the vast majority of overall
greenhouse gas emissions.

forcing by long-lived greenhouse gases (LLGHGS)
increased by 54%, with CO, accounting for about 81%
of this increase.

Overview of observations from the GAW in situ
observational network for 2024

This twenty-first annual WMO Greenhouse Gas (GHG)
Bulletin reports atmospheric abundances and rates of
change of the most important LLGHGs - carbon dioxide,
methane and nitrous oxide — and provides a summary
of the contributions of other greenhouse gases. CO,,
CH, and N,O, together with dichlorodifluoromethane
(CFC-12) and trichlorofluoromethane (CFC-11), account
for approximately 96% [13] of radiative forcing due to
LLGHGs (Figure 2).

The WMO GAW Programme coordinates systematic
observations and analyses of GHGs and other trace
species. Sites where greenhouse gases have been
measured in the last decade are shown in Figure 3.
Measurement data are reported by participating
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Figure 2. Atmospheric radiative forcing, relative to 1990, by LLGHGs
corresponding to the 2025 update of the NOAA AGGI [13]. The chlor-
ofluorocarbons (“CFCs*”) grouping includes some other long-lived
gases that are not CFCs (for example, CCl,, CH,CCl, and halons);
however, CFCs accountfor the majority (95% in 2024) of this radiative
forcing. The hydrochlorofluorocarbons (“HCFCs”) grouping includes
the three most abundant of these chemicals (HCFC-22, HCFC-141b,
and HCFC-142b). The hydrofluorocarbons (“HFCs*”) groupingincludes
the most abundant HFCs (HFC-134a, HFC-23, HFC-125, HFC-143a,
HFC-365mfc, HFC-227ea and HFC-152a) and sulfur hexafluoride (SF;)
for completeness, although SF only accounted for a small fraction

of the radiative forcing from this group in 2024 (13%).

countries and archived and distributed by the World
Data Centre for Greenhouse Gases (WDCGG) at the
Japan Meteorological Agency.

The results reported here by WMO WDCGG for the global
average and growth rate are slightly different from the
results reported by NOAA for the same years [2] due
to differences in the stations used and the averaging
procedure, as well as a slight difference in the time
period for which the numbers are representative. WMO
WDCGG follows the procedure described in detail in [14]
and [15]. Additional information related to the analysis
presented in this Bulletin is available at https://gaw.
kishou.go.jp/publications/summary_figures.

The table provides globally averaged atmospheric
abundances of the three major LLGHGs in 2024 and
changesin their abundances since 2023 and since 1750.
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Figure 3. The GAW global network for CO, in the last decade. The
network for CH, is similar. The in situ network for N,0 and other
LLGHGs is far less dense.

Figure 4. Contribution of the mostimportant long-lived greenhouse
gases to the increase in global radiative forcing from the pre-
industrial era to 2024 [13]

The three GHGs shown in the table are closely linked to
anthropogenic activities and interact strongly with the
biosphere and the oceans. Predicting the evolution of
the atmospheric content of GHGs requires a quantitative
understanding of their many sources, sinks and chemical
transformations in the atmosphere, as well as climate
predictions. Observations from GAW provide invaluable
constraints on the budgets of these and other LLGHGs.
They are increasingly used to improve emission
estimates and to evaluate satellite retrievals of LLGHG
column averages. The Integrated Global Greenhouse Gas
Information System (IG3IS) provides further insights on
the sources of GHGs at the national and sub-national,
especially urban [16], scales.

The NOAA AGGI measures the increase in total radiative
forcing due to all LLGHGs since 1990 [13]. The AGGI
reached 1.54 in 2024, representing a 54% increase in
total radiative forcing from 1990 to 2024 and a 1.5%
increase from 2023 to 2024 (Figure 2). The relative
contributions of other gases in the total radiative forcing
since the pre-industrial era are presented in Figure 4.

Table. Global annual surface mean abundances (2024) and trends
of key greenhouse gases from the GAW in situ observational
network for GHGs. The units are concentrations in dry air, and the
uncertainties are 68% confidence limits. The averaging method
is described in [14].

| co | ch | NO |

2024 global mean 423.9+0.2 1942+2 338.0+0.1

abundance ppm ppb ppb

2024 abundance

relative to 17502 (a2 266% 125%

2023-2024 absolute

increase 3.5 ppm 8 ppb 1.0 ppb

AV LR I S 0.83%  0.41%  0.30%

increase

!Vlean annual absolute 257 10.6 1.07

increase over the past 1 4 »
ppm yr ppb yr ppb yr

10 years

@ Based on pre-industrial mole fractions of 278.3 ppm for C0,, 729.2 ppb
for CH, and 270.1 ppb for N,0. The number of stations used for the
analyses was 179 for C0,, 171 for CH, and 123 for N,0.
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Figure 5. Globally averaged CO, concentration (a) and its growth rate (b) from 1984 to 2024. Increases in successive annual means are shown
as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; the blue dots and blue line in (a)
depict the monthly averages. Observations from 179 stations were used for this analysis.
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Carbon dioxide (CO,)

Carbon dioxide is the single most important
anthropogenic greenhouse gas in the atmosphere,
accounting for approximately 66%* of the radiative
forcing by LLGHGs. It is responsible for about 79%4 of
the increase in radiative forcing over the past decade.
The pre-industrial level of 278.3 ppm represented a
balance of fluxes among the atmosphere, the oceans
and the land biosphere. The globally averaged CO,
concentration in 2024 was 423.9+0.2 ppm (Figure 5a),
152% of the pre-industrial level. The increase in the
annual mean from 2023 to 2024, 3.5 ppm (Figure 5b),
was the highest in the recent history of observations,
higher than the 2.4 ppm increase from 2022 to 2023 by
large margin and higher than the average growth rate
for the past decade (2.57 ppm yr™"). The increase in the
growth rate reflects a combination of the continued
increase in fossil fuel emissions and reduced CO, sink
fluxes, as described in the cover story.

Of the total emissions from human activities during
the 2014-2023 period, about 53% accumulated in the

atmosphere, 26% in the ocean and 21% on land, with no
unattributed imbalance [4]. The portion of CO, emitted
by fossil fuel combustion that remains in the atmosphere
(the airborne fraction, (AF)), varies inter-annually due
to the high natural variability of (mainly terrestrial) CO,
sinks, although there is little evidence for a long-term
AF trend (see the cover story in WMO Greenhouse Gas
Bulletin No. 17).

Methane (CH,)

Methane accounts for about 16%" of the radiative forcing
by LLGHGs. Approximately 40% of methane is emitted
into the atmosphere by natural sources (for example,
wetlands and termites), and about 60% comes from
anthropogenic sources (for example, ruminants, rice
agriculture, fossil fuel exploitation, landfills and biomass
burning) [17]. The globally averaged CH, concentration
calculated from in situ observations reached a new high
0f 1942 + 2 ppb in 2024, an increase of 8 ppb with respect
to the previous year (Figure 6a). This increase is lower
than both the increase of 11 ppb from 2022 to 2023 and
the average annual increase of 10.6 ppb over the past
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Figure 6. Globally averaged CH, concentration (a) and its growth rate (b) from 1984 to 2024. Increases in successive annual means are shown
as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; the blue dots and blue line in (a)
depict the monthly averages. Observations from 171 stations were used for this analysis.
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Impact of global fire emissions in 2024 on the
increase in atmospheric CO,

In 2024, atmospheric carbon monoxide (CO) levels
showed an anomalously high seasonal peak in remote
southern hemisphere surface GAW stations (Figure 9),
mainly due to exceptionally high fire emissions in South
America. CO is a product of incomplete combustion and a
key indicator of atmospheric pollution and wildfire smoke
due to its photochemical lifetime of several weeks. The
CO emitted by wildfires is oxidized to produce CO,. In
addition, most wildfire carbon emissions are in the form
of CO,, so the intensity of the fires had a sizable impact
on the CO, budget and growth rate in 2023-2024 and
will significantly influence its future growth because of
the impact of fires on land use, which in turn will affect
the net CO, land sink.

Wildfire emissions in the Americas reached historic
levels in 2024. In South America, the Plurinational State
of Bolivia especially experienced unusually intense
fires throughout most of the year, with monthly total
emissions the highest for every month except December.
The Brazilian states of Amazonas and Mato Grosso
do Sul also experienced their highest annual total
emissions, and emissions for the Brazilian Amazon
were among the highest in the past two decades. In
North America, the annual total estimated wildfire
emissions for Canada were not as high as the record
year of 2023 but were significantly higher than any
other year since 2003.

CO data from the Copernicus Atmosphere Monitoring
Service (CAMS) global atmospheric composition
reanalysis [21] for September 2024 showed positive
anomalies relative to the 2003-2022 average throughout

most of the tropics and the southern hemisphere, with the
strongest positive anomalies in a wide band extending
from the tropical Pacific to the southern tropical Atlantic
and centred on South America, as shown in Figure 10.
Overall, the annual mean CO for South America was the
highest in the 22 years of the CAMS dataset, while the
global annual mean was the highest since the large-scale
biomass burning emissions from Indonesia during the
El Nino of 2015 [22]. The scale and intensity of the fires
resulted in large-scale smoke plumes throughout much
of the fire seasons in the Americas, with significant
impacts on regional air quality and several episodes
of long-range transport, in addition to increased CO,
emissions.

Amazonia fire CO2 emissions

Over the past 15 years, the Amazon has been significantly
impacted by deforestation, biomass burning and the
degradation of forest climate conditions. Forest loss
causes a reduction in precipitation and an increase in
temperatures, intensifying dry-season climate stress
and causing increasingly drier and hotter conditions that
extend over increasingly longer periods of time. This
process is making the forest increasingly flammable,
and fire has become a significant risk. Starting in 2023,
severe drought conditions in the Amazon led to an
exceptional increase in fire emissions, estimated on
the basis of bimonthly vertical profile measurements
at four Amazonia sites in the Long-term Study of the
Amazon Carbon Balance (CARBAM) project, operated
by the National Institute for Space Research (INPE) in
Brazil since 2010.
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Figure 9. Atmospheric CO levels observed at American Samoa Observatory (SMO —American Samoa), Cape Grim Observatory (CGO — Australia)
and Syowa Station (SY0 — Antarctica), from the NOAA network [20], and at Baring Head Station (BHD — New Zealand), from Earth Science
New Zealand (formerly NIWA), representing a subset of the remote southern hemisphere sites of the WMO GAW network
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CAMS EAC4 Total column carbon monoxide:
Mean September 2024
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Source: CAMS global reanalysis (EAC4) monthly averaged fields

CAMS EAC4 Total column carbon monoxide:
Anomaly September 2024 vs 2003-2022
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Figure 10. Monthly mean total column carbon monoxide (left) and anomalies relative to the 2003—-2022 average (right) for September 2024

Total CO, emissions, fire CO, emissions and net
biome exchange (NBE) were estimated from these
15-year observations [23-25]. Both total and fire
CO, emissions in the Amazon were the highest
in 2024, associated with low-precipitation and high-
temperature conditions (Figure 11). The variability

of carbon emissions and NBE in the Amazon was
strongly driven by the El Nino pattern and the North
Atlantic Ocean high-temperature anomaly, which
caused extreme droughts and high temperatures. These
resulted in higher CO, emissions in 2010, 2015-2016
and 2024.
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Figure 11. Changes in CO, emissions and anomalies in meteorological conditions in the Amazon between 2010 and 2024
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Figure 7. Globally averaged N,0 concentration (a) and its growth rate (b) from 1984 to 2024. Increases in successive annual means are shown
as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; in this plot, the red line overlaps
the blue dots and blue line that depict the monthly averages. Observations from 123 stations were used for this analysis.

decade. The mean annual increase of CH, decreased from
approximately 12 ppb yr~' during the late 1980s to near
zero during 1999-2006 (Figure 6b). Since 2007, average
atmospheric CH, has been continuously increasing.
It reached 266% of the pre-industrial level in 2024. It
is critical to remember that unlike the case with CO,,
anthropogenic sources of CH, are not dominated by fossil
fuel-related emissions; agricultural and waste sources
play the most important role. Studies using GAW CH,
measurements indicate that increased CH, emissions
from wetlands in the tropics and from anthropogenic
sources at the mid-latitudes of the northern hemisphere
are the likely causes of this recent increase since 2007
(see WMO Greenhouse Gas Bulletin No. 20).

Nitrous Oxide (N,0)

Nitrous oxide accounts for about 6% of the radiative
forcing by LLGHGs. Itis the third most important individual
contributor to the combined forcing. N, O is emitted into
the atmosphere from both natural sources (approximately
57%) and anthropogenic sources (approximately 43%),
including oceans, soils, biomass burning, fertilizer use
and various industrial processes. The globally averaged
N,O concentration reached 338.0 +0.1 ppb in 2024, which

is an increase of 1.0 ppb with respect to the previous
year (Figures 7a and 7b) and 125% of the pre-industrial
level (270.1 ppb). The annual increase from 2023 to
2024 was lower than the increase from 2022 to 2023
and slightly lower than the mean growth rate over the
past 10 years (1.07 ppb yr~'). Global human-induced N,O
emissions, which are dominated by nitrogen additions to
croplands, increased by 30% over the past four decades
to 7.3 (range: 4.2-11.4) teragrams of nitrogen per year.
This increase was mainly responsible for the growth in
the atmospheric burden of N,O [18].

Other greenhouse gases

Stratospheric ozone-depleting CFCs, which are regulated
by the Montreal Protocol on Substances that Deplete
the Ozone Layer, together with minor halogenated
gases, account for approximately 12%¥ of the radiative
forcing by LLGHGs. While CFCs and most halons are
decreasing, some HCFCs and HFCs, which are also
potent greenhouse gases, are increasing at relatively
rapid rates; however, they are still low in abundance (at
ppt® levels). Although at a similarly low abundance,
SFg is an extremely potent LLGHG. It is produced by
the chemical industry, mainly as an electrical insulator
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Figure 8. Monthly mean concentration of sulfur hexafluoride (SFy) and the most important halocarbons: (a) SF, and lower mole fractions of
halocarbons and (b) higher halocarbon concentration. For each gas, the number of stations used for the analysis was as follows: SF; (93),
CFC-11(27), CFC-12 (28), CFC-113 (23), CCl, (25), CH,CCI, (26), HCFC-141b (12), HCFC-142b (16), HCFC-22 (16), HFC-134a (13), HFC-152a (12).
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https://library.wmo.int/records/item/69057-no-20-28-october-2024?offset=17

in power distribution equipment. Its concentration is
rising at a quite constant rate and is now more than
twice the level observed in the mid-1990s (Figure 8a).

This Bulletin primarily addresses long-lived greenhouse
gases. Relatively short-lived tropospheric ozone
has a radiative forcing comparable to that of the
halocarbons [19]; because of its short lifetime, its
horizontal and vertical variability is very high and global
means are not well characterized with a network such as
that shown in Figure 3. Many other pollutants, such as
carbon monoxide, nitrogen oxides and volatile organic
compounds, although not referred to as greenhouse
gases, have small direct or indirect effects on radiative
forcing. Aerosols (suspended particulate matter) are
short-lived substances that alter the radiation budget.
All the gases mentioned in this Bulletin, as well as
aerosols, are included in the observational programme
of GAW, with support from WMO Member countries
and contributing networks.
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CANADA'S GREENHOUSE GAS MONITORING NETWORK

Fifty years of monitoring atmospheric greenhouse gases in Canada

In the summer of 1975, Environment and Climate Change
Canada (ECCC) started the regular collection of air
samples at Alert, Nunavut in the High Arctic (82.451°N,
62.507°W) and on Sable Island, Nova Scotia (43.933°N,
60.007°W), in the Atlantic Ocean, ideal locations for
tracking changes of carbon dioxide levels in background
air. Over the last 50 years, ECCC has seen annual average
carbon dioxide mole fractions measured at Alert increase
from 334 to 425 ppm. Today, the Dr. Neil Trivett Global
Atmosphere Watch Observatory at Alert is one of three
WMO GAW GHG intercomparison sites.

In the 1980s, a new monitoring station was added on the
Pacific coast and ECCC’s methane monitoring programme
began. As measurement technology advanced and
understanding greenhouse gas emissions and uptake
became a focus of policymakers, ECCC expanded its
network between 2000 to 2020 to add more regions
across Canada. At its peak, the GHG monitoring network
included sites in the boreal forest, in the sub-Arctic and
Arctic, near major wetlands, in urban areas, as well as
in the Western Canadian Sedimentary Basin (WCSB),
where most of Canada’s oil and gas extraction industry
is located. These greenhouse gas measurements are
frequently used and included in global data products and
reported to the WMO World Data Centre for Greenhouse
Gases (WDCGG), from which they are downloaded
several thousand times per month.

Today, the five core sites (cyan) provide information on
changes in atmospheric greenhouse gas levels from coast
to coast to coast; these data are reported biannually
as one of the Canadian Environmental Sustainability
Indicators (CESI).

As atmospheric modelling tools have improved, ECCC's
long-term high-precision observations have come to
be used not only for research purposes, but also to
support core government policies, such as Canada’s
Methane Strategy. The atmospheric monitoring sites
in the WCSB (yellow) allow the tracking of changes in
methane emissions from oil and gas operations, which
decreased by about 30% from 2010 to 2022 (about
-1 MtCH, per year). Additionally, these atmospheric
data can improve quantification of methane emissions
from Canada’s oil and gas industry. Using additional
atmospheric observations, ECCC’s inventory group
developed a new hybrid approach to tracking methane
emissions, which has increased the accuracy of emission
reporting.

Recently, data previously collected at Canadian sub-Arc-
tic and Arctic sites (red) was used in multiple studies
to investigate natural methane emissions from these
regions. The observations revealed regional changes
in natural methane emissions in response to increasing
temperatures of up to 1 MtCH, (28 MtCO,e) per year for
each 1 °C of change. Furthermore, these observations
have been used extensively in comparisons with state-
of-the-art wetland and ecosystem models, which are
continually being improved to better predict future
climate change impacts.

As climate change continues to affect the carbon cycle,
and as national as well as international policies are
implemented to mitigate emissions and achieve climate
goals such as net zero, the data collected by ECCC’s
GHG monitoring network will continue to provide crucial
information for scientists, policymakers and civil society.
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