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1  Introduction

A heatwave is an extreme temperature event defined as a 
period of excessive heat that usually lasts for one week or 
at least three days (Perkins-Kirkpatrick and Lewis 2020). 
Research into the impacts of heatwaves on human health has 
consistently revealed that a disproportionately high number 
of older individuals are affected (Xu et al. 2016; Vu et al. 
2019; Rodrigues et al. 2021). The 2003 heatwave in Europe 
led to 70,000 excess mortalities (Robine et al. 2008) and 
over 13 billion euros in economic damage (United Nations 
Environment Programme 2003). Heatwaves can also have 
far-reaching cascading and compound impacts, exacerbat-
ing drought impacts on water, soil, energy and agriculture 
sectors (Niggli et al. 2022; Soares et al. 2023). Global pre-
dictions indicate that climate change will lead to increased 
intensity, frequency, and duration of heatwaves, with Europe 
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Abstract
Heatwaves can greatly impact societies, underscoring the need to extend current heatwave prediction lead times. This 
study investigates multiple machine learning (ML) model approaches for heatwave occurrence prediction with long lead 
times of one to five months. Five ML classifiers, built using Google Earth Engine remote sensing datasets, are developed 
and tested for heatwave prediction for the national scale (case example of Sweden) over time period 1989–2019. The 
ML modelling is based on 13 final explanatory atmospheric and landscape features. The balanced random forest model 
exhibits the consistently best performance among the tested ML models, stable across all investigated lead times (from one 
to five months) with balanced accuracy of around 0.77, even though not overall identifying actual heatwave occurrence 
(decreased recall for heatwave occurrence from 0.87 to 0.81). Application of SHapley Additive exPlanations technique for 
model interpretation shows increasing importance of model output with increasing lead time for landscape features such 
as runoff and soil water. Overall, more frequent heatwave occurrence emerges for places characterized by lower values 
of geopotential height, evaporation, precipitation, and topographical slope, and higher values of temperature, runoff, and 
sea level pressure. The study also exemplifies how the developed ML modelling approach could be used to identify and 
warn for early signs of forthcoming heatwave occurrence, and further step-wise improve the identification and warning 
toward less uncertainty for shorter lead times. This can facilitate earlier warning in support of better planning of measures 
to mitigate adverse heatwave impacts, up to several months ahead of their possible occurrence.

Keywords  Summer heatwaves · Machine-learning models · Explanatory-predictive factors · Landscape factors · 
Atmospheric climate factors · Geopotential height
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identified as a future hotspot. The projected upward trend 
for Europe is three to four times faster than in other north-
ern mid-latitude regions, with Europe experiencing a mean 
increase of 0.61 heatwave days per decade, compared to a 
mean increase of 0.21 heatwave days per decade in other 
mid-latitudes regions worldwide (Rousi et al. 2022).

Early warnings of heatwaves with a sufficient lead time 
can enable timely and more effective societal responses to 
protect vulnerable populations and socioeconomic activi-
ties (Merz et al. 2020). Extending heatwave predictions to 
a seasonal lead time would allow for a timelier and more 
effective risk reduction and longer term health system 
preparedness, with better resource management (Weirich-
Benet et al. 2023). State-of-the-art deterministic heatwave 
prediction models that employ physical laws to solve the 
equations of atmospheric physics to forecast future states 
of the atmosphere can accurately predict heatwaves up to 
two weeks in advance (Lorenz 1963; Domeisen et al. 2023). 
Predictions beyond two weeks lead time using determinis-
tic approaches are challenging due to the increase of inher-
ent uncertainty in complex variables interactions over time, 
such as between atmospheric variables (e.g. wind speed 
and temperature) and landscape variables status and feed-
backs (e.g. land cover and soil moisture) (Domeisen et al. 
2023). Heatwaves are often associated with high-pressure 
systems, while memory in landscape states, such as mois-
ture deficit and land–atmosphere feedbacks, plays a cru-
cial role in atmospheric predictability on sub-seasonal time 
scales (Ford et al. 2018). Knowledge gaps in atmospheric 
and landscape model parameterisations, as well as forecast 
initialisation, impact the reliability of forecasts and require 
further research, particularly for sub-seasonal heatwave 
prediction (Ford et al. 2018). The challenges of detecting 
early signs and forecasting heatwaves weeks in advance are 
further compounded by a lack of historical data on extreme 
events, the difficulties of building reliable statistics using 
climate models (due to the substantial computational cost 
required to simulate a sufficient number of events), and 
biases in models that hinder accurate quantitative assess-
ments of extremes given the scarcity of available data 
(Jacques-Dumas et al. 2022).

As the capabilities of current deterministic approaches 
for heatwave prediction beyond a 2-week lead time may be 
insufficient for deploying effective protection and mitiga-
tion strategies, more studies now explore the potential of 
machine learning (ML) models (Barriopedro et al. 2023). 
Use of ML-based approaches can potentially increase heat-
wave prediction lead times as ML models have the advan-
tage of identifying, rather than pre-assuming, the complex 
interactions between various possible explanatory and pre-
dictive factors. ML-based modelling therefore is increas-
ingly applied in studies of hydro-climatic hazards, such 

as floods, droughts, and heatwaves (Rahmati et al. 2020; 
Panahi et al. 2022). For example, a study by Khan et al. 
(2021) achieved accurate predictions with a one-month lead 
time of total summer heatwave days (HWD) in Pakistan 
using a support vector machine. Further, Asadollah et al. 
(2022) developed and compared three ML models (Ada-
Boost regression decision tree (ABR-DT), Random Forest, 
and Decision Tree) for total summer HWD prediction in 
Iran with a three-month lead time, and found ABR-DT to 
be the most accurate. Weirich-Benet et al. (2023) predicted 
heatwaves at weekly resolution using different approaches 
and concluded that ML can improve sub-seasonal heatwave 
prediction. Straaten et al. (2022) found that explainable ML 
using high-dimensional remote sensing data can comple-
ment physically-based models for heatwave prediction, 
providing an effective alternative for such predictions with 
a lead time longer than two weeks. However, the develop-
ment and application of ML models for heatwave research 
and prediction are still in their infancy compared with 
work on other natural hazards, such as droughts and floods 
(Mosavi et al. 2018; Gyaneshwar et al. 2023). Additionally, 
most ML/deep learning-based heatwave studies to date have 
considered sub-seasonal forecast lead times (less than one 
month), without applying model explainability techniques, 
and the focus has been on relatively warm and/or dry cli-
mate regions such as the Middle East and Central Europe 
(Domeisen et al. 2023).

The aim of this study is to advance ML model develop-
ment for heatwave prediction by creating a comprehensive 
framework for seasonal prediction with longer lead times, 
useful for practical implementation. This research supports 
interdisciplinary efforts to mitigate climate change risks and 
underscores the importance of integrating scientific advances 
into environmental management and policy frameworks. As 
a practical case study, we focus here on predicting summer 
HWD at a monthly resolution for the national-scale case 
example of Sweden. The specific objectives of this study 
are: (i) to evaluate and compare the performance of vari-
ous ML models developed using relevant remote sensing 
data for the potential prediction of heatwave occurrences 
with lead times ranging from one to five months, and (ii) 
to analyse the relative importance of various explanatory-
predictive features (e.g. related to the atmospheric climate, 
the landscape, and other relevant case aspects) in terms of 
their influence the on ML model outputs.
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2  Materials and methods

2.1  Study area

Sweden is located in the high-latitude region of northern 
Europe (55–69°N; 11–24°E), which is characterised by 
long, cold winters (Sköld Gustafsson et al. 2023b). Although 
major documented natural hazards in Sweden mostly com-
prise flooding and wildfire events (Sköld Gustafsson et al. 
2023a), heatwave exposure is of increasing concern due to 
rising temperatures over the past two decades, e.g. mean 
peak temperatures in Sweden were higher in the period 
1991–2020 (Fig.  1b) than in 1961–1990 (Fig.  1a). Trend 
analysis suggests that heavily populated areas in the south-
ern part of the country will experience more prolonged and 
frequent heatwaves in the near future (Vieira Passos et al. 
2024). A persistent heatwave in Sweden in the summer 
of 2018 resulted in around 750 cases of excess mortality 
(SMHI 2020). Sweden faces a considerable risk of heat-
wave impacts due to its population being more acclimated 

to cooler climates. For example, Sweden is accustomed to 
building homes and organizing activities designed to with-
stand severe cold rather than heat (SWECO 2024). Addi-
tionally, heatwaves are generally the most common primary 
hazard interacting with other natural hazards (Sköld Gus-
tafsson et al. 2023b). Heatwaves in Sweden mostly occur 
in the summer months (June–August) and are defined in 
this study as days with the maximum temperature exceed-
ing 27  °C for at least three consecutive days, based on 
the threshold adopted by the Swedish Meteorological and 
Hydrological Institute (SMHI) for issuing high-temperature 
warnings (Oudin Åström et al. 2020).

2.2  Development method

The framework developed and tested in this study com-
prised three main steps (Fig. 2): (1) data extraction, (2) data 
pre-processing, (3) model training, validation, and testing.

Fig. 1  Maps of Sweden showing 
the average value of the years’ 
highest temperatures during 
the periods (a) 1961–1990; (b) 
1991–2020 (adapted from SMHI 
2023)
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(SSHF) (Olsson et al. 2016; Domeisen et al. 2023; Tak et 
al. 2024). Studies of the 2018 heatwave in northern Europe 
have shown that soil water content deficits suppressed cloud 
formation through land–atmosphere feedbacks, contributing 
to a prolonged period of high temperatures (Tak et al. 2024). 
Additionally, the target month is included as a feature, indi-
cating whether the heatwave prediction is for June, July, or 
August. This inclusion helps capture monthly variability, as 
certain conditions may consistently precede heatwaves in 
July but not in June.

The atmospheric and landscape features were retrieved 
from the remote sensing dataset using Google Earth Engine 
(GEE). GEE is a cloud computing platform that allows 
the acquisition of data from various sources for any spe-
cific study area worldwide, and is increasingly being used 
in heatwave-related studies. The study period in GEE was 
set to 1989–2019, with a resolution of 27,830 m based on 
data availability and quality. GEE utilises the image pyra-
mid technique to manage data from multiple sources and 
each source is ingested at its native resolution (Gorelick et 
al. 2017). The pyramid structure allows GEE to efficiently 

2.2.1  Data extraction

A total of 19 possible explanatory and predictive physical 
features, representing various factors that may influence the 
heatwave dynamics, were selected for ML heatwave model-
ling. These features were initially selected based on a com-
prehensive literature review (Table  1) (Khan et al. 2021; 
Asadollah et al. 2022; Weirich-Benet et al. 2023). Atmo-
spheric features, including the u component of wind speed 
(u wind), v component of wind speed (v wind), monthly 
mean temperature, mean sea level pressure (MSLP), specific 
humidity, precipitation, and geopotential height, play impor-
tant roles in atmospheric circulation and have been used for 
the synoptic analysis of heatwave phenomena in the North-
ern Hemisphere (Drouard et al. 2019; Fonseca-Rodríguez 
et al. 2023). In addition to atmospheric processes, regional 
controls of heatwaves occurrence at sub-seasonal time 
scale may also include landscape features, such as evapo-
ration, soil moisture, runoff, land cover/ use properties, 
and topographical slope, influencing the evaporative cool-
ing through latent heat flux and surface sensible heat flux 

Fig. 2  Flowchart of the framework 
developed and used for heatwave 
prediction in Sweden
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classification, with a value of 1 assigned for one or more 
HWD occurring during a month (Class 1) and a value of 0 
assigned for no HWD occurrence (Class 0). Figure 3b illus-
trates the density distribution of the two classes for selected 
continuous features.

2.2.2  Data pre-processing

The data obtained from GEE were subjected to four data 
pre-processing procedures, feature selection, engineering, 
scaling and data resampling to ensure high-quality, consis-
tent, and suitable data for subsequent modelling.

2.2.3  Feature selection

The feature selection consisted of identifying an effective 
subset of features from the full set by removing redundant 
features (Tang et al. 2014). The feature selection method 
applied in this study is a correlation-based filter that 
searches feature subsets according to the degree of redun-
dancy and finds features with low intercorrelation (Khalid 
et al. 2014). Features with strong linear correlation contain 

handle large datasets, while also allowing users to select 
data based on spatial and temporal specifications (Gorelick 
et al. 2017). For continuous value images, pixel values at the 
upper levels of the pyramid represent the mean of the pixels 
from the lower levels. In contrast, for the discrete-value land 
cover image, pixel values correspond to the most frequently 
occurring values. The built-in ee.Terrain.slope function in 
Google Earth Engine is used to calculate terrain slope from 
a digital elevation model (DEM). This function determines 
the steepness or gradient of the terrain at each point by ana-
lysing the rate of elevation change between adjacent pixels 
in the DEM. Figure  3a illustrates the Pearson correlation 
coefficient (R) between some considered features and the 
target number of heatwave days, suggesting that there are 
no linear relationships between the selected indicators and 
heatwave occurrence. Hence, advanced ML models could 
be deployed to address the nonlinear relationship. Heatwave 
days were identified based on daily maximum temperature. 
Since almost all heatwaves in the case of Sweden occur 
in the summer months (June, July, or August) (Sjulgård et 
al. 2023), only these were set as target months. Monthly 
heatwave occurrence was further defined using binary 

Feature Category Data source Description
u wind Atmospheric ERA 5 Monthly average 10 m u-component of wind
v wind Atmospheric ERA 5 Monthly average 10 m v-component of wind
Mean temperature Atmospheric ERA 5 Monthly average air temperature at 2 m 

height
Mean sea level 
pressure

Atmospheric ERA 5 Monthly average sea level pressure

Specific humidity Atmospheric FLDAS Monthly average specific humidity
Precipitation Atmospheric ERA 5 Monthly sum of total precipitation
Geopotential 
height

Atmospheric NCEP Monthly average surface geopotential height

Soil moisture Landscape FEWS NET Monthly average soil moisture 0–10 cm 
underground

Runoff Landscape ERA 5 land Monthly sum of surface runoff and subsur-
face runoff

Evaporation Landscape ERA 5 land Monthly sum of total evaporation
Latent heat flux Landscape ERA 5 land Monthly average latent heat exchange with 

surface
Sensible heat flux Landscape FLDAS Monthly average heat transfer between 

surface and atmosphere
Soil water 1 Landscape ERA 5 land Monthly average volume of water in 0–7 cm 

soil layer
Soil water 2 Landscape ERA 5 land Monthly average volume of water in 

7–28 cm soil layer
Soil water 3 Landscape ERA 5 land Monthly average volume of water in 

28–100 cm soil layer
Soil water 4 Landscape ERA 5 land Monthly average volume of water in 

100–289 cm soil layer
Land cover Landscape ESA 22 land cover classes defined with the United 

Nations Land Cover Classification System
Slope Landscape USGS
Target month Spatial–temporal 6, 7, 8 correspond to targeted months as in 

June, July, and August

Table 1  Features considered in 
this study, data source for each 
feature and brief description
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Fig.  3  (a) Scatterplots of selected continuous features and the num-
ber of heatwave days in the target months (June, July, and August) 
between 1989 and 2019. Low R values suggest that there is no linear 

relationship between the features and target. The red colour represents 
the regression line. (b) Kernel density estimate plot of selected con-
tinuous features and target class
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(Alam et al. 2020), was applied in this study. Cluster cen-
troids replace the majority class samples with cluster cen-
tres, reducing the amount of majority class samples while 
maintaining the representative variations (Tsai et al. 2019). 
This resampling technique was only applied to the training 
dataset for the ML models.

2.2.7  Model training, validation, and testing

A nested cross-validation scheme was implemented in this 
study using time series split cross-validaton and day-forward 
strategy, tailored to the time series nature of the data. The 
day-forward strategy ensures the models only use past data 
to predict future events, thereby avoiding look-ahead bias. 
Initially, each model was trained and validated in the inner 
loop using inner loop data that was time series split into two 
splits for hyperparameters optimisation. Subsequently, the 
models were refitted to the entire inner loop data and tested 
against the outer loop’s test years (2013, 2014, 2015, 2016, 
2018, and 2019), constituting approximately 20% of the 
collected data. Feature scaling and resampling are applied 
exclusively to the training data in each fold. This is achieved 
by integrating these processes within each model’s pipeline, 
ensuring that the features for scaling and the resampling 
adjustments are learned only from the training dataset and 
then applied to the corresponding validation or test sets to 
prevent data leakage. The results in terms of average perfor-
mance for these test years ensure a robust representation of 
the overall model performance. The year 2017 was excluded 
from testing as no recorded heatwave events occurred in that 
year. With class 1 missing, model performance metrics (F1 
score, precision, and recall) cannot be calculated for 2017. 
As a result, only partial insights into model performance can 
be obtained from model testing for that year. Lead times 
ranging from one to five months were tested, and the overall 
setup described above was repeated for each lead time. In 
total, 25 ML models were developed and evaluated in this 
study. Following a literature review, five popular ML clas-
sifiers (Extreme Gradient Boosting, Gaussian Naïve Bayes, 
K-Nearest Neighbour, Balanced random Forest, and logis-
tic regression) were selected and used in the study based 
on their relevant characteristics. Brief summaries of each 
model class and their applications are provided below.

2.2.8  Extreme gradient boosting

Extreme Gradient Boosting (XGBoost) is a highly effec-
tive and scalable algorithm derived from the ensemble of 
decision trees (Chen and Guestrin 2016). It has a built-in 
regularisation function to reduce overfitting, and parallel 
processing to speed up the model training process (Asadol-
lah et al. 2022). A previous study used an XGBoost model 

highly similar information, and Pearson correlation is often 
used for redundancy analysis (Khalid et al. 2014). A Pear-
son correlation matrix of the 19 features was plotted with 
a heatmap to examine mutually correlated feature groups. 
Only one feature from each highly correlated feature group 
was kept and the others were excluded in the further ML 
modelling.

2.2.4  Feature engineering

Feature engineering is the process of designing features to 
represent combined actions or underlying patterns based on 
domain knowledge (Qu et al. 2023). To better utilise pos-
sible patterns and relationships over time, extracting them 
from the time series data into features that can better repre-
sent them (Verdonck et al. 2024). The means, standard devi-
ations, and linear regression trends of values in previous 
months were calculated to capture central tendencies, vari-
ability, and directional movements over time. The values 
of precipitation, evaporation, soil moisture, and soil water 
in previous months were aggregated to assess the overall 
hydrological status of the pixel. Wind speed is calculated 
by combining the U and V components of wind and con-
structed as new features to measure the integrated effect of 
wind direction and intensity.

2.2.5  Feature scaling

Feature scaling was applied to transform selected features 
to a common range, minimising the bias of feature value 
distribution (Singh and Singh 2020). This procedure is 
required since different features have distinct value ranges, 
and greater numerical feature values may misleadingly 
dominate over smaller numerical ones (Singh and Singh 
2020). The minimum–maximum normalisation method was 
applied, setting the maximum value equal to 1 and the mini-
mum equal to 0. BRF and XGBoost models were excluded 
from the feature scaling process due to tree-based models 
don’t require feature scaling.

2.2.6  Data resampling

Resampling is a state-of-the-art solution to address imbal-
anced data (Alam et al. 2020). Based on historical data, 
months in which a heatwave occurred were relatively infre-
quent compared with months without a heatwave. This 
caused a class imbalance problem, leading to bias towards 
the majority class (Class 0) (Lin et al. 2017). Data imbal-
ance is a common problem when dealing with real-world 
applications, e.g. natural hazards (Oommen et al. 2011). To 
balance the data without losing essential information, clus-
ter centroids, a clustering-based under-sampling technique 
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combination of the input features and then transforms them 
with a sigmoid function (Bartosik and Whittingham 2021). 
It is widely applied in the clinical field (Kannan et al. 2023) 
and hazard research, e.g. mapping of flood susceptibility 
and drought spatial patterns (Al-Juaidi et al. 2018; Niaz et 
al. 2021).

2.2.13  Baseline model based on probability

A baseline model is developed using historical data on 
heatwave occurrence to predict future events. This model 
assesses the probability of a heatwave in a given year based 
on historically observed heatwaves from the year 1989 to 
the given year at each pixel. It calculates the frequency of 
heatwaves during summer months and uses the ratio as a 
probability estimate for future predictions. A class is ran-
domly generated depending on the calculated probability. 
This model primarily served as an initial benchmark and a 
point of comparison for evaluating the performance of more 
complex models with additional features.

2.2.14  Hyperparameter tuning

Hyperparameters are external configuration variables of 
algorithms. Hyperparameter tuning consists of finding the 
optimal settings of hyperparameters to classify imbalanced 
data at algorithm level (Rosales-Pérez et al. 2023), possi-
bly achieving significant ML model improvements (Kong 
et al. 2019). Random search, one of the two most widely 
used strategies for hyperparameter tuning, was selected for 
use in this study due to its advantages in terms of efficiency 
and flexibility (Bergstra and Bengio 2012). The tuning pro-
cess was integrated into the nested cross-validation frame-
work, specifically within the inner loop. Random search 
was performed 50 iterations per loop, enabling a thorough 
exploration of the parameter space while managing com-
putational costs. The hyperparameter tuning process con-
cluded in the selection of the best hyperparameters based on 
the performance metric of balanced accuracy (as detailed in 
Sect. 2.2.4). The hyperparameter grids for the ML models 
are listed in Table 2.

2.2.15  Model evaluation

The minority data class (with a heatwave in a month) was 
defined as positive (Class 1), while the majority class (with 
no heatwave in a month) was defined as negative (Class 0). 
Seven evaluation metrics, F1 score, precision, and recall for 
both classes, and balanced accuracy (all defined in Eqs. (1)–
(4) below), were selected to evaluate model performance. 
The F1 score symmetrically combines and represents in 
one metric both precision and recall (considered here also 

to predict the number of heat-related ambulance calls and 
achieved high accuracy (Ke et al. 2023).

2.2.9  Gaussian Naïve bayes

Gaussian Naïve Bayes (NB) is an efficient classifier identi-
fied as one of the top ten algorithms in data mining (Wu et 
al. 2008). Gaussian NB is based on Bayes’ theorem, assum-
ing the data are Gaussian-distributed and that all the features 
are independent (Wu et al. 2008). It has given satisfactory 
results in urban flood depth prediction (Wang et al. 2021).

2.2.10  K-Nearest neighbour

K-Nearest Neighbour (KNN) is a generic non-parametric 
algorithm that does not make assumptions on data distribu-
tion (Wu et al. 2008). KNN predicts outcomes by identi-
fying the k nearest data points in the feature space, using 
measures such as Euclidean distance. For classification 
tasks, it assigns the class of a data point based on the major-
ity class among its k nearest neighbours (Guo et al. 2003). 
This model has been extensively applied in drought predic-
tion, with good results (Raja and Gopikrishnan 2022).

2.2.11  Balanced random forest

Balanced Random Forest (BRF) is an ensemble model that 
modifies the traditional random forest algorithm to better 
handle imbalanced data. Classic random forest consists of 
decision trees built using bootstrap samples drawn from the 
entire training dataset. In contrast, BRF draws equal-sized 
samples from each class ensuring that the trees in the forest 
are trained on a balanced set of data (More and Rana 2017). 
Random Forest is one of the most widely applied models in 
environmental research, and has been widely tested in pre-
vious heatwave-related studies (Asadollah et al. 2022; Wei-
rich-Benet et al. 2023). BRF has been successfully applied 
in wildfire risk assessment compared to standard random 
forest and XGBoost, primarily because wildfire datasets 
are typically imbalanced and BRF effectively identifies the 
minority class (Wang et al. 2022). This characteristic of 
imbalance is also present in heatwave datasets. Although 
BRF has not yet been explicitly tested in heat-related stud-
ies, its proven capability to manage class imbalance sug-
gests it could be effective for heatwave prediction.

2.2.12  Logistic regression

Logistic regression (LR) is a robust and flexible classifica-
tion model for predicting a binary outcome, such as yes/
no, when the features are continuous (Bartosik and Whit-
tingham 2021). Logistic regression calculates a linear 
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F1 − score =
2 ∗ T P

T P +F P ∗ T P
T P +F N

T P
T P +F P + T P

T P +F N

� (1)

Precision = TP

TP + FP
� (2)

Recall = TP

TP + FN
� (3)

Balanced accuracy = 1
2

(
TP

TP + FN
+ TN

FP + TN

)
� (4)

where TP (true positives) represents the number of positive 
predictions that are correctly predicted, TN (true negatives) 
is the number of negative predictions that are correctly pre-
dicted, FP is the number of false positive predictions, and 
FN is the number of false negative predictions.

2.2.16  Model interpretation

Machine-learning models are often considered black boxes 
and are increasingly being used for high-stakes prediction 
applications to support decision-making processes (Rudin 
2019). Therefore, efforts and approaches to interpreting 
model outputs physically are as crucial as improving pre-
dictability in order to provide scientific insights, enable 
model improvements and improve scientific understanding 
of the modelling process (Lundberg and Lee 2017). To this 
end, SHapley Additive exPlanations (SHAP), a state-of-the-
art ML model interpretation technique based on cooperative 
game theory (Angelov et al. 2021), was employed. SHAP 
calculates the model output impact of each explanatory-
predictive feature as if the different features were players 
in a coalition game, and the payoff of the features, referred 
to as the Shapley value, is a measure of their importance 
(Angelov et al. 2021). SHAP is a strong and insightful way 
to physically interpret the results of complex ML algorithms 
(e.g. Althoff and Destouni 2023) and offers valuable per-
spectives on underlying dynamics that govern heatwave 
patterns.

3  Results

3.1  Feature selection

A correlation matrix heatmap illustrating the associations 
between the 19 possible explanatory-predictive features 
considered initially in this study (as outlined in Table 1) is 
shown in Fig. 4. Three highly correlated pairs of features 
were identified (R > 0.8): evaporation and surface latent 
heat flux, specific humidity and monthly mean temperature, 

separately and defined in the following), and is a popular 
metric in imbalanced classification, especially when accu-
rate prediction of heatwave occurrence (Class 1) is impor-
tant (Zhang et al. 2017). Precision measures the accuracy of 
predictions, indicating the proportion of correctly predicted 
positive examples out of all predicted positives. Recall, 
on the other hand, assesses the model’s ability to identify 
relevant class examples, measuring the proportion of true 
positive examples correctly predicted out of all actual posi-
tives. These metrics are less sensitive to changes in data 
distributions compared to accuracy (Bekkar and Djemaa 
2013). Balanced accuracy is the average of the true positive 
rate (recall) and the true negative rate, providing a balanced 
representation of correctness across all considered classes 
(Bekkar and Djemaa 2013).

These evaluation metrics are defined as follows (Luo et 
al. 2019):

Table 2  Hyperparameter search space for different classifiers
Classifier Hyperparameter Value range References
Logistic 
regression

Inverse of regu-
larization strength 
(C)

Loguniform (1e−5, 
100)

Sun et al. 
(2020)

Solver lbfgs, newton-cg, 
liblinear, sag, saga

Max iterations (100, 5000)
Balanced ran-
dom forest

Number of 
estimators

(50, 200) Sun et al. 
(2020)

Max features sqrt, log2
Max depth (3, 30)
Min samples split (2, 10)
Min samples leaf (1, 10)
Bootstrap True, False
Criterion Gini, Entropy
Max leaf nodes (50, 200)

Extreme 
gradient 
boosting

Number of 
estimators

(50, 200) Pan et al. 
(2022)

Learning rate 0.001, 0.01, 0.001, 
0.3

Max depth (2, 20)
Gamma 0, 0.1, 0.2, 0.3, 0.4, 

0.5
Colsample bytree 1, 0.3, 0.5,0.7
Alpha 0, 0.01, 0.1, 1
Lambda 0, 0.01, 0.1, 1
Sub sample 0.5, 0.7, 1

K nearest 
neighbor

Number of 
neighbors

(3, 20) Halder et 
al. (2024)

Weights Uniform, distance
Metric Minkowski, Euclid-

ean, Manhattan
Algorithm Auto, Ball_tree, 

Kd_tree, Brute
Naïve Bayes Smoothing np.logspace(−10,0, 

num = 50)
Raza et al. 
(2024)

1 3

3341



Stochastic Environmental Research and Risk Assessment (2025) 39:3333–3352

heatwaves (class 0). The BRF model consistently demon-
strates the highest and most stable performance in terms of 
balanced accuracy and F1score across all lead times. It also 
exhibits a declining trend in recall of heatwave occurrence 
(class 1), going from 0.87 for the shortest (one month) to 
0.81 for the longest (five months) lead time. The standard 
deviations of the evaluation metrics (error bars) increase 
notably with longer lead times for BRF models (i.e., bal-
anced accuracy goes from 0.06 to 0.09, F1 for class 1 from 
0.23 to 0.27, and F1 for class 0 from 0.03 to 0.05 with 
increased lead time).

The XGBoost model performs second-best for the lead 
time of one month and exhibits relatively high class 1 recall 
performance, which improves as the lead time increases. 
However, its class 0 recall performance declines signifi-
cantly with longer lead times, indicating a substantial fail-
ure to predict the non-occurrence of heatwaves at extended 
lead times. The performance of the KNN, LR, and NB mod-
els varies across different lead times. The LR model has its 
best performance at one-month lead time in terms of bal-
anced accuracy (0.72) and class 1 F1 score (0.27), with its 
performance generally declining as the lead time increases 
(i.e., at a five-month lead time balanced accuracy and class 
1 F1 score are 0.66 and 0.24, respectively). LR shows com-
paratively low performance in class 1 recall and class 0 
precision. The KNN model ranks second-best for the lead 
times of two, four, and five months, particularly in terms 
of balanced accuracy, although its class 1 recall exhibits 

and soil water content at different depths (1, 2, 3 4). These 
pairs showed a similar pattern, therefore only one of each 
pair was retained (evaporation, monthly mean temperature, 
and soil water 1). The selection of features for further ML 
modelling was guided by domain knowledge. Evaporation 
was retained over surface latent heat flux due to their strong 
correlation and the more prevalent application of evapora-
tion in hydrological models (Devia et al. 2015). While both 
evaporation and surface latent heat flux represent the tran-
sition of water from liquid to vapor in terms of mass and 
energy, respectively (Wild and Liepert 2010), evaporation 
is typically prioritized in modelling efforts because of its 
greater data accessibility and interpretability, particularly 
concerning processes such as heat accumulation (Hunt et al. 
2002; Miralles et al. 2014, 2019).Temperature was chosen 
over humidity as it serves as a direct indicator of heatwaves, 
which are central to this analysis. Soil water at the surface 
level was selected from the various deeper levels because of 
its more direct interaction with the atmosphere. The remain-
ing 13 features were then utilised in the modelling phase of 
the study.

3.2  Model performance

The performance of the ML models in the testing years is 
shown in Fig.  5. All tested models outperform the base-
line probability model in F1 score and recall for heatwave 
occurrence (class 1) and precision for non-occurrence of 

Fig. 4  Correlation matrix heatmap 
of possible relevant explanatory-
predictive features for heatwave 
prediction investigated in this 
study. Red indicates features with 
strong positive linear correlations, 
white indicates no linear correla-
tion, and blue indicates negative 
linear correlations. See Table 1 for 
feature descriptions
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Fig. 5  Error bar plot of evaluation metrics (a) F1 
score for Class 0; (b) F1 score for Class 1; (c) 
balanced accuracy; (d) precision for Class 0; (e) 
precision for Class 1; (f) recall for Class 0 (g) recall 
for Class 1 of the five machine-learning models 
in the prediction of heatwave in Sweden with lead 
times of one to five months. The error bar indicates 
the estimated forecast uncertainty via the standard 
deviation. Shadow area shows the one standard 
deviation range for BRF model
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(Perkins 2015; Miralles et al. 2019; Mascolo et al. 2025). 
In contrast, landscape features play a key role in initiating 
heatwaves at sub-seasonal to seasonal lead times, driven 
by slow-evolving land surface processes (Perkins 2015; 
Dirmeyer et al. 2021). Empirical studies have shown that 
dry winters and springs can induce summer heatwaves in 
Europe (Quesada et al. 2012), while a precipitation deficit 
generally contributes to summer heatwaves globally (Muel-
ler and Seneviratne 2012). However, precipitation anoma-
lies are more influential in southern Europe compared to 
northern Europe (Quesada et al. 2012), which aligns with 
the relatively lower importance observed in the study.”

Figure  7 also shows the variability and distribution of 
SHAP values for the features in the BRF model. The impact 
ranges for the features narrow and become more concen-
trated around zero, implying weaker influence on model 
outputs, for longer lead times. Overall, heatwave formation 
tends to be higher for lower values of geopotential height, 
precipitation, and slope, and for higher values of tempera-
ture, mean sea level pressure, and runoff.

3.4  Example of application for heatwave in July 
2019

Heatwave occurrence prediction maps were generated for 
July 2019 across Sweden utilising the best-performing BRF 
model for each lead time in a series from longer to shorter 
lead times (Fig. 8). A large-scale heatwave occurred in Swe-
den in July 2019, and the present predictions were made as 
one specific test example of the potential of the ML-based 
methodology framework developed in this paper to sup-
port early-warning systems. The maps in Fig. 7 present the 
observed heatwave occurrence (Fig. 8a) alongside the best 
ML model predictions at lead times from five months to one 
month before the occurrence (Fig.  8b–f). The number of 
correctly classified pixels for the various lead times, from 
five months to one month, are 807, 911, 913, 919, and 930, 

significant variability. The NB model performs second-best 
at three months lead time but shows a general decline trend 
in performance as the lead time increases.

Figure  6 presents the spatial performance of the one-
month lead time BRF model in terms of the evaluation met-
rics considered during the testing years. In southern Sweden, 
the model exhibits lower F1 score and recall for class 0 and 
balanced accuracy, while showing higher F1 score, preci-
sion, and recall for class 1. Conversely, northern Sweden 
displays relatively lower performance for class 1 metrics 
(particularly F1 score and recall) and higher performance 
for class 0. The dark blue areas on the F1 score, precision, 
and recall maps indicate regions where one class is absent in 
either the true observed or predicted data, resulting in zero-
valued metrics.

3.3  Feature importance

Figure 7 shows the feature importance ranking and impact 
value obtained using the SHAP approach for the best-per-
forming BRF models across the studied lead times of one to 
five months. Geopotential height emerges as a key explan-
atory-predictive feature for HWD occurrence, consistently 
ranking in the top two for the BRF model at different lead 
times. Temperature, evaporation, and related variables have 
notable high impacts on model output at lead times of one 
and two months. For longer lead times of three, four, and five 
months, the importance of these variables slightly decreases 
but they remain influential. In contrast, the importance of 
landscape explanatory variables such as runoff and soil 
water, generally increases with increasing lead time. Pre-
cipitation has an overall moderate influence without a clear 
trend with changing lead time. Different physical drivers 
influence the formation of heatwaves at various timescales 
(Domeisen et al. 2023). At shorter lead times, atmospheric 
features associated with synoptic systems dominate, as they 
are highly sensitive to changes in radiation and temperature 

Fig. 6  Spatial plot of evaluation metrics: (a) F1 score for Class 0; (b) 
F1 score for Class 1; (c) balanced accuracy; (d) precision for Class 0; 
(e) precision for Class 1; (f) recall for Class 0; (g) recall for Class 1 of 

the one-month lead time balanced random forest model in predicting 
heatwaves in Sweden
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potentially attributable to the infrequent occurrence of heat-
wave events. In southern Sweden, the BRF model achieves 
higher Class 1 F1 scores and recall, although certain areas, 
such as Stockholm and Skåne County, exhibit a tendency 
toward more frequent heatwave events. The BRF model is 
constructed using data from all counties in Sweden. Devel-
oping separate models for the northern and southern regions 
could provide valuable insights in relation to the findings of 
this study and potentially further enhance the performance 
of heatwave predictions.

While baseline probability model effectively predicted 
non-heatwave conditions (demonstrating high recall for 
class 0), it exhibited notably low recall for heatwave occur-
rence (class 1). This highlights the limitation of this simple 
extrapolation model, which relies solely on historical fre-
quencies and does not account for additional explanatory 
features. All other tested models outperformed the baseline 
model predictions, except for XGBoost at a lead time of five 
months. The XGBoost model exhibits high performance at 
one-month lead time, capturing most heatwave occurrences 
with high class 1 recall and balanced accuracy. However, its 
performance decreases notably with increased lead time, as 
seen by its low F1 score for class 0 and balanced accuracy 
(Fig. 5a,c). This declining performance trend suggests that 
XGBoost is biased to class 1, likely due to the data resam-
pling process. The KNN model demonstrates high flexibil-
ity in handling various data distributions but is also more 
sensitive to these distributions. The variability in heatwave 
class distributions over the years makes it difficult for KNN 
to consistently determine the optimal number of neighbours 
(Zhang 2022), leading to its fluctuating performance.

The intuitive land–atmosphere feedback mechanism, 
where dry land reduces land evaporation, leading to drier 
air conditions, suggests an associated decrease in precipita-
tion that could potentially trigger meteorological drought. 
As evaporation decreases, the latent heat flux also dimin-
ishes, while the sensible heat flux increases, potentially 
driving the onset of a heatwave (Miralles et al. 2019). The 
current SHAP value analysis identifies geopotential height 
as a consistent primary contributor to heatwave formation, 
with temperature and evaporation also emerging as sig-
nificant atmospheric and landscape features, respectively. 
Other landscape features, such as runoff and soil water, gain 
importance in model outputs at longer lead times, likely 
reflecting the relatively stable cumulative effects of land-
scape conditions over time. Overall, feature importance val-
ues decrease for longer lead times, reflecting the complexity 
of predicting heatwave occurrence over extended time peri-
ods. For models like XGBoost and KNN, showing varying 
performance for different lead times, improved understand-
ing and accounting for the physical relationship complexity 
could guide effective adjustments in model configuration to 

respectively, out of a total of 1294 pixels across Sweden. 
These stable results for the BRF model are consistent with 
its reliable performance in terms of balanced accuracy.

4  Discussion

This study presents a ML methodology framework to com-
paratively develop, identify, and extract insights from the 
suitable models for predicting heatwave occurrences with 
seasonal lead times, leveraging global remote sensing data-
sets. The methodology framework could be adapted to other 
regions using global datasets on GEE platforms and open-
source ML libraries. This study’s results demonstrate that 
ML models can provide early signs of forthcoming heat-
waves up to five months in advance. The BRF consistently 
emerged as the top-performing model due to its superior 
balanced accuracy of around 0.77, demonstrating its ability 
to handle imbalanced datasets. Most tested models outper-
formed the comparative baseline model that predicted heat-
waves by estimating the probability of occurrence based on 
approximately 30 years of historical data. However, it is dif-
ficult to compare the prediction performance of the present 
study with previous studies due to different definitions of 
heatwaves, used data, and target variables (e.g., annual total 
number of heatwave days, binary weekly heatwave occur-
rence, daily maximum temperature). Ultimately, the present 
study results may add to such contributions toward further 
strategic deployment of ML models in climate adaptation 
efforts, offering a methodical approach to enhancing pre-
dictive accuracy and operational readiness for heatwaves, 
thereby reducing their socio-economic impacts.

With overall consistency, the BRF model outperformed 
all other tested models across the different studied lead times 
(of one to five months) with stable balanced accuracy. The 
associated increase in standard deviations for longer lead 
times implies that the heatwave predictions of this model 
might occasionally still be rather inaccurate at longer lead 
times; to some degree, this may also be due to uncertain-
ties in the underlying data time series. The strong perfor-
mance of the BRF model is likely attributed to its random 
forest foundation, which has been well-validated and widely 
applied in various heat (Giamalaki et al. 2022; Suthar et al. 
2023) and other natural hazard-related studies (Zennaro et 
al. 2021). The consistent superior performance of this model 
should encourage further explorations of its utility for pre-
diction of natural hazards and particularly extreme events 
that commonly involve issues of imbalanced data. Spatial 
evaluation metrics maps (Fig. 6) indicate that the BRF model 
demonstrates a greater accuracy in predicting non-heatwave 
conditions in northern Sweden; however, it encounters dif-
ficulties in forecasting heatwave occurrences in this region, 
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imbalanced distribution of heatwave occurrence versus non-
occurrence data. Such imbalances often bias models toward 
the majority class (non-occurrence of heatwaves), neces-
sitating adjustments to address this issue. Careful model 
calibration and evaluation are thus crucial for good model 
predictions, which are essential for relevant issuing of heat-
wave warnings and for the efficacy of heat-health action 
plans (Kotharkar and Ghosh 2022).

Heatwave warning systems aim to mitigate the adverse 
impacts of heatwaves and enhance communication among 
stakeholders. According to the World Health Organization’s 
heat-health action plan guidelines, the adverse impacts of 
heatwaves can be significantly reduced through well-coor-
dinated actions at multiple levels (Matthies et al. 2008). 
These measures include accurate and timely alert systems 
to provide timely public advisories and a heat-related health 
information plan about what, with whom, and when to com-
municate (Matthies et al. 2008). In this study, the models 
were developed to predict the occurrence of heatwaves. For 
such model to be utilised practically, e.g., in a multi-hazard 
early-warning system, follow-up research is further needed, 
e.g., on: (i) an impact-based prediction modelling and (ii) 
action road maps.

In an impact-based prediction model, the consequences 
of the heatwaves are not only related to the hazard itself, but 
also to the characteristics of the population in the affected 
area. For example, people with pre-existing health prob-
lems, socially isolated elderly people with fragile health 
conditions, young children, people suffering from obesity, 
and cardiovascular diseases (Liu et al. 2022) are particu-
larly vulnerable to heatwaves. As an increase in the aging 
population is expected (SCB 2022), heatwaves are projected 
to have more severe impacts in the future, not only due to 
climate change but also as a result of rising urbanization 
(Hu et al. 2024). It is crucial for authorities to identify and 
locate vulnerable populations and areas in need of medical 
intervention during a heatwave within urban environments. 
By classifying the impact level of heatwaves—such as high-
impact or low-impact—and integrating this information into 
the model used in this study, the accuracy of predicted risks 
can be significantly enhanced.

In action road maps, communication science is extremely 
important. Roadmaps can be created to improve societal 
and organisational preparedness, prevent negative con-
sequences, and ensure the timely response to heatwave-
related events and crises in Sweden. The roadmaps could 
be structured based on systemic mapping of best manage-
ment practices in the EU and other parts of the world, their 
adaptability to the Swedish context, and relevant policies 
and regulations to support societal security in Sweden.

This study has limitations that require improvements and 
need to be addressed in future research. First, to align with 

better capture the occurrence dynamics of heatwaves. For 
instance, adjusting the weight given to geopotential height 
and/or landscape features might improve the performances 
of these models for longer lead times.

From a practical point of view, these insights not only 
improve understanding of heatwave formation, but also 
facilitate the structured preparations for such events, guid-
ing interventions well before the heatwave occurs. By iden-
tifying key predictive features, such as geopotential height, 
along with the significance of landscape characteristics, 
these models will enable disaster management agencies to 
develop a tiered, proactive response strategy. For instance, 
with the example shown in Fig. 8, agencies can predict and 
monitor a large-scale heatwave four to five months ahead. 
Between one and three months ahead, agencies can launch 
broad-scale awareness campaigns with increased certainty, 
optimise resource allocation, and implement early-stage 
mitigation strategies for the spatial coverage of the heat-
wave. These strategies could include adjustments in pub-
lic transportation schedules to reduce heat exposure and 
the establishment of specific water-management protocols 
to handle increased demand during peak heat periods. In 
the long term, these results can inform future spatial plan-
ning, facilitating the design of houses and other buildings 
that are better equipped to withstand both heat and cold. For 
example, nature-based solutions (NbS) such as incorporat-
ing shaded areas in the summer while allowing sunlight dur-
ing the winter can be effectively integrated into residential 
layouts (Pan et al. 2021; Barnett and Bouw 2022). Addition-
ally, including NbS elements like pathways, water bodies, 
and various types of vegetated areas can further enhance 
resilience (Sahani et al. 2023; Ibsen et al. 2024). As the 
lead time shortens, the focus can shift towards fine-tuning 
emergency response plans, mobilising community support 
mechanisms, and deploying targeted health services to vul-
nerable populations.

Machine-learning methodologies are progressively 
employed to enhance the accuracy of heatwave prediction, 
extending their ability beyond current predictability limits 
(Domeisen et al. 2023). However, it is also important to 
acknowledge the inherent ML limitations. These models 
rely heavily on the quality and availability of training data 
and are unable to generate predictions beyond the patterns 
captured in the provided data (L’Heureux et al. 2017). This 
makes it particularly challenging to predict extreme events 
due to the common spatiotemporal gaps in data and the 

Fig. 7  SHapley Additive exPlanations (SHAP) values for each feature 
in the balanced random forest model in prediction with lead times of 
one to five months, where blue represents lower and red represents 
higher feature values, and positive and negative SHAP values (x-axis) 
imply a higher and lower probability of heatwave occurrence, respec-
tively. Hgt: geopotential height; SSHF: Sensible heat flux; MSLP: 
mean sea level pressure; T: trend
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challenges, such as increased noise, but it has the potential 
to improve model performance with more precise data, pro-
vided the model is retrained and recalibrated with adjusted 
hyperparameters to account for the data updates.

5  Conclusions

This study bridges a research gap between physically based 
models that commonly enable relatively short-term heat-
wave prediction, and ML models for possible considerably 
longer-term prediction and associated earlier warning. The 
task of early heatwave prediction, i.e., with a seasonal lead 
time, is challenging due to the complex interactions between 
different types of variables (atmospheric, landscape, and 
others). This study demonstrates the potential ability of the 
present multi-model ML methodology framework, using 
open-source remote sensing data from GEE, to enhance the 
prediction of heatwaves with seasonal lead times and be 
implemented in, e.g., a multi-hazard early-warning system. 
Among the five ML models investigated, BRF emerged as 
best suited for this purpose with persistent high performance 
and ability to handle imbalanced data. Further research 
should aim at integrating real-time data and additionally 
also impact perspectives in the ML modelling for practical 
early-warning and risk assessment purposes.

The novelty of the present study lies in its development 
of and comparison framework for five different ML mod-
els, and the concrete application example of how best-per-
forming models could potentially facilitate better heatwave 
preparedness and mitigation strategies. The results further 
show the possibility of good long-term predictive power for 
the best-performing ML model at lead times from one to 
five months, while the feature importance assessment and 
interpretation using the SHAP approach show the explana-
tory basis for this performance. Overall, the present results 

the current national heatwave warning system and simplify 
the modelling process, the threshold heatwave temperature 
in this study was set to the same value (27 °C) throughout the 
whole Sweden. However, a single threshold value may not 
be suitable across all parts of Sweden, as heatwave impacts 
may differ considerably between northern and southern 
regions. Second, besides temperature as a heatwave indica-
tor, a heat index that combines temperature and humidity 
could also better represent heatwave impacts and should 
be further considered in future modelling efforts (Xu et al. 
2016). Third, the selected explanatory-predictive features 
investigated in this study were based on a literature review 
on ML-based heatwave prediction approaches and were 
limited by data availability in GEE. Future research could 
integrate other relevant features and test for importance 
in seasonal heatwave prediction, e.g. cloud cover and the 
amount of snowfall in winter (Hansen et al. 2014; Dirmeyer 
et al. 2021). Fourth, the present ML modelling was built on 
reanalysis data, which are not real-time accessible. Future 
work should attempt to integrate real-time data and evalu-
ate the operational model readiness for early warning appli-
cations. To adapt the modelling for operational forecasting 
purposes, real-time data– such as those from local weather 
stations and satellite images—should supplement or replace 
reanalysis and/or other combined model-observation data 
combinations. This is particularly important because global 
reanalysis products have been shown to considerably 
diverge from other relevant datasets, potentially misrepre-
senting many water-related landscape variables (Zarei and 
Destouni 2024) that this study has identified as essential 
features for heatwave prediction. The real-time data should 
be for the same or analogous explanatory features as the 
reanalysis data used in this study, to enable transfer learning 
techniques, such as translations of the distributions of fea-
tures and transformations of feature representations (Segev 
et al. 2017). Shifting to real-time data introduces new 

Fig. 8  Example of heatwave occurrence observed in July 2019 (a) and associated predictions at one to five months (b to f) lead time based on BRF 
model. The yellow area indicates the presence of a heatwave, while the purple area indicates regions without a heatwave
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