

2023-17호

• • • •

이슈포커스

글로벌 원자력 에너지의 미래 (美 Atlantic Council, 8.24)

산업 · 기술동향

탄소 포집 솔루션 도입 관련 산업 클러스터의 역할 고찰 (WEF, 8.16) LiDAR를 중심으로 한 신흥 기술 분야의 미-중 경쟁 조명 (美 CRS, 8.14) 중국 내 LMFP 배터리 재조명 (日 미쓰이물산전략연구소, 8月) 한국 AI 생태계 분석 (美 CSET, 8月)

정책동향

캐나다 서스캐처원 주 소형모듈원자로 개발 지원 (加 NRCan, 8.19) 인플레이션 감축법(IRA)의 녹색 경제 영향 검토 (WEF, 8.21) EU의 경제안보전략 방향 점검 (日 미즈호은행, 8.16) 일본의 반도체 산업 활성화 방안 (美 CSIS, 8.25)

부록

유망기술 클리핑

2023-17호

• • • •

이슈포커스

글로벌 원자력 에너지의 미래 (美 Atlantic Council, 8.24)

산업 · 기술동향

탄소 포집 솔루션 도입 관련 산업 클러스터의 역할 고찰 (WEF, 8.16) LiDAR를 중심으로 한 신흥 기술 분야의 미-중 경쟁 조명 (美 CRS, 8.14) 중국 내 LMFP 배터리 재조명 (日 미쓰이물산전략연구소, 8月) 한국 AI 생태계 분석 (美 CSET, 8月)

정책동향

캐나다 서스캐처원 주 소형모듈원자로 개발 지원 (加 NRCan, 8.19) 인플레이션 감축법(IRA)의 녹색 경제 영향 검토 (WEF, 8.21) EU의 경제안보전략 방향 점검 (日 미즈호은행, 8.16) 일본의 반도체 산업 활성화 방안 (美 CSIS, 8.25)

부록

유망기술 클리핑

산업기술 동향워치 2023년 17호 요약

구분	주요 내용	페이지
0슈 포커스	• 글로벌 원자력 에너지의 미래 (美 Atlantic Council, 8.24) - 에너지 탈탄소화 측면에서 원자력 에너지의 역할을 검토하고, 에너지 수요 및 안보 확립 과제 대응을 위해 각국 정부가 추진할 수 있는 정책 조치를 도출	1
산업: 기술 동향	• 탄소 포집 솔루션 도입 관련 산업 클러스터의 역할 고찰 (WEF, 8.16) - 앤트워프-브뤼헤 항, 영국 동부 해안 클러스터 사례를 통해 탄소 포집 솔루션 도입에 있어 산업 클러스터 파트너십의 역할을 조명	3
	• LiDAR를 중심으로 한 신흥 기술 분야의 미-중 경쟁 조명 (美 CRS, 8.14) - 미-중 신흥 기술 경쟁 분야의 하나인 라이다(LiDAR) 기술을 개관하고 의회 고려사항을 정리	4
	• 중국 내 LMFP 배터리 재조명 (日 미쓰이물산전략연구소, 8月) - 중국에서 재조명되고 있는 리튬망간인산철(LMFP) 배터리의 특성과 업계 동향을 개관	5
	 한국 AI 생태계 분석 (美 CSET, 8月) 하드웨어, 특허, 기업·투자, 연구, 인재 양성의 다섯 가지 주요 AI 개발 지표를 기반으로 한국의 AI 기술 수준과 당면 과제를 분석 	6
	• 캐나다 서스캐처원 주 소형모듈원자로 개발 지원 (加 NRCan, 8.19) - 저가 청정 전력의 안정 공급을 목적으로 서스캐처원 주 소형모듈원자로(SMR) 개발·보급 프로젝트 자금 지원을 승인	7
정책 동향	• 인플레이션 감축법(IRA)의 녹색 경제 영향 검토 (WEF, 8.21) - 녹색 경제 측면에서 「인플레이션 감축법(IRA)」('22.8)이 미친 영향과 주요 성과를 검토	8
	• EU의 경제안보전략 방향 점검 (日 미즈호은행, 8.16) - EU 최초의 「경제안보전략」('23.6)을 검토하고, '디리스킹'의 필요성과 회원국별로 상이한 대중(對中) 접근방식을 고찰	9
	• 일본의 반도체 산업 활성화 방안 (美 CSIS, 8.25) - 일본 반도체 산업의 국제 경쟁력 회복을 위한 주요 정책 기조를 점검	10

Ho

이슈포커스

글로벌 원자력 에너지의 미래 (美 Atlantic Council, 8.24)

- 미국 대서양위원회 글로벌 에너지센터가 에너지 탈탄소화 측면에서 원자력 에너지의 역할을 검토하고, 에너지 수요 및 안보 확립 과제 대응 등을 위해 각국 정부가 추진할 수 있는 정책 조치를 도출
 - 원자력 발전은 러-우 전쟁 이후 국가적 책무로 부상한 에너지 안보 목표 달성을 뒷받침할 수 있는 요소로 주목
 - 원자력의 활용성과 저탄소 특성을 고려할 때 전 세계 기후 변화와 대기 오염 위험 저감, 에너지 수요 증가 대응에 있어 그 역할이 확대될 것으로 예상
- 각국의 경제성·신뢰성을 유지하면서 전력 공급 시스템의 탈탄소화를 심화할 수 있는 방안으로 기존 원자로 유지 필요성이 논의되고 있으며, 신축 중인 첨단 원자력 발전소 또한 금세기 중반까지 핵심 역할을 담당할 수 있을 것으로 기대
 - 민간 기업을 중심으로 이전 세대보다 내재적 안전성(inherent safety)이 높은 새로운 원자로*가 개발되고 있는데, 이러한 첨단 원자로는 발전(發電) 외에도 지역난방, 담수화, 수소 생산 등의 분야에 사용되고 있는 화석 연료를 대체하여 고온 공정 열을 공급할 잠재력 보유
 - * 소형모듈원자로(SMR), 수냉식 외 액체금속·헬륨·용융염 등의 냉각제 사용 원자로, 마이크로원자로, 핵융합기반 발전소 등
- 구세대 원자로 사고, 서구의 신형 원자로 건설 비용 초과 현상, 상대적으로 진전이 느린 고준위 핵폐기물 처리 문제 등은 여론에 부담으로 작용
 - 합리적 비용·일정에 따른 원자로 건설 프로젝트 수행 여부가 향후 원자력의 미래를 결정하는 주요 요인이 될 수 있으나, 무엇보다 내재적 안정성을 제고한 설계 개발이 필요
 - 미국 등 일부 국가의 사용후핵연료 처리 프로그램이 교착상태에 머물러 있는 상황에서, 핵연료 처리에 집중하는 정부 정책이 향후 원자력 발전을 뒷받침할 것으로 예상
 - ※ '10년 이후 미국 사용후핵연료 관리 프로그램인 유카 마운틴(Yucca Mountain) 프로젝트에 대한 의회 예산 배정이 이루어지지 않는 가운데, 일부 주는 핵연료 관리가 진전되지 않을 경우 신규 원자로 건설을 금지하는 법률을 시행 중
- 원자력 발전소는 고임금 일자리의 원천이지만, 기존 인력의 노령화·은퇴로 인해 훈련된 학생 확보가 향후 발전을 좌우

0

- 미국 등 일부 국가의 경우 신규 원자로 건설이 전무하거나 부족한 상황이므로, 신규 원자로 건설 프로그램을 실질적으로 지원할 수 있는 충분한 인력이 존재하는지 의문
- 반면 러시아와 중국은 최근 수십 년간의 자국 내 건설 프로그램과 원자로 수출을 통해 원자력 부문의 성장 잠재력을 입증
- 각국 규제 기관의 첨단 원자로 인허가 방식이 향후 원자로 보급 수준을 결정하는 데 일정 역할을 담당할 것으로 예상
 - 특히 ▲기존 배치 경험이 전무한 상업용 원자로 유형 ▲과거 허가 이력 없는 원자로 용도(공정열등)에 대한 국가 기관의 접근 방식이 원자력 에너지의 미래에 영향을 미칠 전망
 - 첨단 원자로 설계 허가가 여러 국가에서 동시에 혹은 순차적으로 진행되는 만큼, 학습 경험을 공유하기 위한 각국 규제기관 간의 협력을 통해 같은 기간 내 보다 대규모의 원자로가 보급될 수 있도록 지원 가능
 - ※ (예) GE-Hitachi BWRX-300의 인허가에 관한 미국 원자력규제위원회(NRC)와 캐나다 원자력안전위원회 (CNSC) 간의 협력 사례가 대표적
- 에너지 수요와 안보, 환경·공중보건 과제 대응을 위한 정책 권고사항으로 RD&D,
 환경, 인력, 규제 부문의 구체적인 조치를 제시

▫ 원자력 발전 정책 권고 ▮

구분	주요 내용
R&D와 실증	• '30년대 신규 첨단 원자로 활용 가능성을 제고할 수 있도록, '20년대 관련 실증 활동을 지원
	• 기존 원자로의 수명 연장*, 운영 안전성을 개선하는 첨단 핵 연료 등에 대한 연구개발(R&D) 수행
	* 재료 노후화 및 방사선 조사의 영향 포함
	• 연료 주기* 관련 연구개발 및 실증(RD&D) 실시
	* 해수(海水) 기반 우라늄 생산, 고순도 저농축 우라늄 연료, 시추공(borehole) 등의 폐기기술
정치·사회적 환경	 ▲이산화탄소와 대기 오염 방지의 사회적 편익 ▲저탄소 전력이 신뢰성·경제성· 배출 목표 동시 충족에 기여하는 방식 등을 환경·에너지·규제 기관 문서를 통해 대중에 설명 이산화탄소 및 대기 오염 배출 제한, 재정적 처벌 부과 등 기후 변화 대응을
	위해 기술 중립적 접근 방식을 추진 ※ (예) 미국은 「인플레이션 감축법(IRA)」을 통해 재생 에너지, 원자력 에너지, CCUS를 장착한 화석 에너지에 세액 공제 해택을 제공
인력	• 원자력공학 박사 과정 등을 비롯한 관련 분야 학생 교육을 지원
규제 협력	• 소형모듈원자로(SMR) 배치를 검토 중인 국가 간 규제기관 협력 기회를 모색
	※ 미국-캐나다 간 규제기관 협력 조치를 첨단 원자로 인허가 효율성 제고를 뒷받침하는 모델으로 활용 가능

(참고: Atlantic Council, THE GLOBAL FUTURE OF NUCLEAR ENERGY, 2023.08.24.)

산업·기술 동향

탄소 포집 솔루션 도입 관련 산업 클러스터의 역할 고찰 (WEF, 8.16)

- 세계경제포럼(WEF)이 앤트워프-브뤼헤 항, 영국 동부 해안 클러스터 사례를 통해 탄소 포집 솔루션 도입에 있어 산업 클러스터 파트너십의 역할을 조명한 기고문을 게재
 - 탄소 포집은 중공업의 불가피한 잔여 배출(residual emissions) 문제를 해결할 수 있는 핵심 방안으로, 철강·화학·시멘트·에너지 등 난감축 부문의 탄소 발자국 저감 잠재력을 보유하고 있으나 경제적 실행 가능성이 기술 보급을 저해
 - 산업 클러스터는 탄소 포집 솔루션을 촉진하는 핵심 동력으로서 정부, 탄소 포집 서비스 제공업체. 구매자 간의 견조한 파트너십 생태계를 조성 가능
 - ※ 공공-민간 협력 및 산업 간 파트너십을 바탕으로 솔루션의 공공 자금 접근성 및 경제성 증진 방안을 제시하고, 산업 전략과 정책 프레임워크에 따라 탄소 포집 가치시슬 구성 요소의 개발과 자금 조달을 분리함으로써 구조적 위험을 완화
- (벨기에 앤트워프-브뤼헤 항구*) Antwerp@C 프로젝트를 통해 '30년까지 항만 지역 탄소 배출량 50% 감축을 목표로 탄소 포집 공유 인프라 구축을 추진
 - * 유럽 최대의 통합 화학 클러스터가 소재해 있는 에너지·화학 허브로, 앤트워프-브뤼헤 항구 및 7개 주요에너지·화학 기업(Air Liquide, BASF, Borealis, ExxonMobil 등) 간 컨소시엄이 프로젝트를 주도
 - 프로젝트는 크게 ▲배출원에서 포집한 CO₂ 수집·운송용 개방형 파이프라인 ▲파이프라인과 전용 액화 플랜트 간의 연결 ▲최종 저장소로 운송하기 위한 수출 터미널로 구성
 - 산업이 집중되어 있어 지역 내 대규모 탄소 배출업체 간의 인프라 공유 및 규모의 경제 달성에 유리하며, 참여 기업의 집단적 경험과 전문성을 활용할 수 있다는 특징 보유
- (영국 동부 해안 클러스터*) 성숙 산업 및 발전 시설이 집적되어 있으며 안정적인 CCUS 수요와 성장을 지원
 - * (East Coast Cluster) ZeroCarbon Humber와 Net Zero Teesside라는 두 개의 산업 클러스터로 구성
 - 에너지 부문 주요 기업으로 구성된 컨소시엄 'Northern Endurance Partnership'이 클러스터를 뒷받침하는 북해 운송·저장 인프라를 주관
 - 컨소시엄 주요 참여자 간의 협력을 통해 가치사슬 통합과 포괄적인 CCUS 네트워크 구축을 보장함으로써, 자원·리스크 공유 기회를 발생시키고 단일 주체의 부담을 경감
 - ※ 영국 정부는 수익성/정책 리스크, CCUS 서비스 제공업체와 구매자의 운영 개시 시기 불일치 등의 가치사슬 내 위험을 고려해 비즈니스 모델과 수익 메커니즘 개발을 추진

(참고: WEF, Why industrial clusters are key to unlocking the potential of carbon capture solutions, 2023.08.16.)

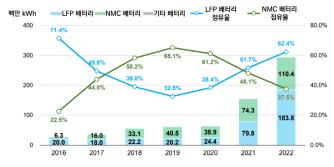
0

LiDAR를 중심으로 한 신흥 기술 분야의 미-중 경쟁 조명 (美 CRS, 8.14)

- 미 의회조사국(CRS)이 미-중 신흥 기술 경쟁 분야의 하나인 라이다(LiDAR)* 기술을 개관하고 의회 고려사항을 정리
 - * (Light Detection and Ranging) 펄스 레이저 광으로 물리적인 물체의 거리, 속도 및/또는 고도를 측정하여 주변 환경을 매핑하는 원격 감지 방법
 - 미국과 중국 정부는 전략적 신흥 기술을 경제 경쟁력 및 국방의 핵심 요소로 인식하고 있으며, 자동차·농업·기상·제조·기타 시스템에 사용되는 LiDAR 기술이 대표적인 경쟁 기술에 해당
 - 지금까지는 미국 기업을 중심으로 LiDAR 분야가 발전해 왔으나 최근 중국 기업이 국가의 정책적 지원, 미국 시장과 기술 활용 등을 바탕으로 약진
- '60년대 미국이 방위 및 항공 우주용 군사 기술로서 LiDAR를 처음 개발한 이후 자율 항법 시스템 발전과 함께 핵심 기반 기술로서 LiDAR 시장이 확대
 - LiDAR의 용도는 상업용과 군사용으로 분류할 수 있으며, 전기차(EV) 및 관련 자율주행 시스템 수요 상승에 따라 LiDAR 사용이 빠르게 증가
 - ※ (상업용) ▲(자동차) 차선 유지, 충돌 방지, 첨단 운전자 지원, 자율 주행용 감지 ▲(정밀 농업) 작물과 토양 상태 모니터링 ▲(기상) 기후 및 기상 상황 예측 ▲(제조) 로봇 공학 및 안전성·생산성 모니터링
 - ※ (군사용) ▲(자율 항법) 무인 지상 및 공중 차량(UxV)의 자율 항법 기능 지원 ▲(전투) LiDAR 장착 UxV를 통한 전투 피해 평가 수행 ▲(기타) 자연재해 후 구조적 손상 조사 및 격오지·험지 환경 데이터 수집
- 중국은 LiDAR 및 반도체·광학 센서 등 관련 기술 개발을 위해 정책적으로 해외 지식재산권(IP) 취득을 지시하고 관련 자금을 지원
 - 정부는 국가 산업 정책과 보조금, 시장 보호, 조달 등의 특혜와 불공정 관행 등을 통해 자국 LiDAR 기업에 혜택을 부여
 - ※ ▲'20년부터 스마트 시티, 스마트 제조, 자율주행 등 LiDAR 활용 부문 개발을 위한 우선 지원 제공 ▲'22년부터 중국의 역량 개발을 조건으로 LiDAR 부문에 대한 외국인 투자를 장려하고 LiDAR를 수출 통제 대상에 포함 ▲정책적 중국 IP 사용 촉진 및 자국 기업의 글로벌 확장을 위한 기술 표준 주도 강조
 - 중국 기업은 미국 자본 시장을 이용해 자금 조달, 미국 시장 진출, 파트너십 체결, 미국 기술 획득을 도모하고 있으며, '20년 출하량 기준 전 세계 차량용 LiDAR 시장의 58% 점유하는 등 시장 입지를 빠르게 강화
- 미국 의회는 공정한 경쟁 보장 및 국가 안보를 위해 ▲연방·주·군의 중국 LiDAR 시스템 매입 심사·제한을 위한 조달 규칙 강화 여부 ▲외국인 투자, 수출 통제, 공정 거래, IP 라이선스·침해 관련 정책 수립 등을 검토 가능

(참고: CRS, U.S.-China Competition in Emerging Technologies: LiDAR, 2023.08.14.)

______ 중국 내 LMFP 배터리 재조명 (日 미쓰이물산전략연구소, 8月)


- 일본 미쓰이물산전략연구소가 중국에서 재조명되고 있는 리튬망간인산철(LMFP) 배터리의 특성과 업계 동향을 개관
 - LMFP 배터리는 양극재에 사용되는 철의 일부를 망간으로 바꾼 리튬이온 배터리로, 리튬인산철 (LFP)처럼 비용과 안전성을 유지하면서도 보다 높은 에너지밀도를 실현한 것이 장점

* 1E	PII	MFP	NMC	배터리의	주요	성능 비급	7 .

구분	LFP 배터리	LMFP 배터리	NMC 배터리	주요 성능 비교
양극재 결정 구조	올리빈형	올리빈형	층상암염형	LMFP 배터리 ——LFP 배터리 —— NMC 배터리
양극재 이론 용량	170	170	200	LIVITY WICH — ETT WICH — NIVIC WICH
(mAh/g)	170	170	280	에너지 밀도
최대 셀 에너지밀도	170	230	350	급속 충전 성능 작동 전압
(Wh/kg)	170	230	330	
작동 전압(V)	3.2	3.7	3.7	안전성
수명(회)	2,000~6,000	2,000~3,000	800~2,000	T-8
안전성	고	고	중	비용
비용	저	저	고	* 축의 바깥쪽으로 갈수록 평가 상승

- 비용 대비 효과가 우수한 LFP 배터리가 중국 전기차 배터리 시장 점유율의 약 60%를 차지하고 있는 가운데, 유망 후속 제품으로 LMFP 배터리 양산 움직임이 활발
 - '17년 이후 중국 정부가 전기차 보조금 제도를 통해 고에너지밀도 배터리를 우대해 오면서, 제도상 불리해진 LFP 배터리 점유율이 해마다 하락하고 LMFP 배터리 구현도 지연
 - 이후 보조금 제도의 고에너지밀도 배터리 우대 조치 시정('20), 완전 철폐('23)에 따라, 중국 전기차용 배터리 시장에서 LFP 배터리 점유율이 62.4%로 대폭 회복

■ 중국 LFP 배터리, NMC 배터리의 전기차 탑재량 추이('16~'22) ■

- 현재 LFP와 3원계 배터리로 양분되어 있는 배터리 시장에서 LMFP가 중형 전기차를 중심으로 탑재되며 점유율을 확대해 나갈 것으로 예상

(참고:三井物産戦略研究所,中国で再注目されるリン酸マンガン鉄リチウムイオン (LMFP) 電池, 2023.08.)

한국 AI 생태계 분석 (美 CSET, 8月)

Ho

- 미국 조지타운대학교 산하 정책연구기관인 안보신기술센터(CSET)가 하드웨어, 특허, 기업·투자, 연구, 인재 양성의 다섯 가지 주요 AI 개발 지표를 기반으로 한국의 AI 기술수준과 당면 과제를 분석
 - 한국은 '30년 내 국제경영개발대학원(IMD)의 세계 디지털 경쟁력 3위 국가 진입을 목표로, AI를 비롯한 여러 기술 개발 촉진을 위해 국자 자원을 투입하고 있으며 정부, 학계, 산업계가 협력할 수 있는 환경 조성에 박차

■ 한국 AI 기술 발전 현황 ■

	- 인국 Al 기울 월신 연왕 ■
구분	주요 내용
	• AI 개발에 필요한 첨단 반도체인 로직칩 및 메모리칩 생산 분야에서 높은 점유율 보유
휘드에서	- 반도체는 한국 경제에 가장 중요한 수출 품목으로, '22년 총 수출액 중 반도체 부문
하드웨어	비중이 19%에 육박하며 대중 수출이 반도체 총수출의 59%(660억 달러)를 차지
	- 한국 기업의 글로벌 반도체 공급망 내 부가가치 비중은 16%로 미국에 이어 세계 2위('21)
	• '10년~'21년 한국의 AI 특허 출원·등록 수는 세계 3위로, 대기업이 다수의 특허권을
특허	보유(삼성·LG는 총 등록 건수의 9% 차지)
=01	• 분야별로는 기계학습이 가장 많은 비중(77%)을 차지하였고, 에너지 관리·교육·국방
	분야 특허 수도 글로벌 2위 수준에 해당
	• '14년 이후 AI 기업에 대한 투자가 꾸준한 증가세를 나타내는 가운데, '21년 비상장
기업 및 투자	AI 기업 투자 금액이 27억 6,000만 달러를 기록
기ㅂ ㅊ 구시	• '10년 이후 자국 내 투자자들이 한국 AI 시장 확장을 주도해 왔으나, 미국 중심의
	외국인 투자자도 AI 스타트업 등에 고가치 투자 단행
	• '10년~'21년간 68,404건의 AI 관련 논문을 발표하였는데(세계 11위), 이는 기술 수준이
연구	유사한 일본·이탈리아보다 저조하고, 기술 선도국 네덜란드보다는 앞선 성과
Ŀı	• 한국의 주요 AI 연구 협력국은 미국과 중국으로, 지난 10년간 발표된 논문의 31%을
	외국인 연구자와 공동 저술
	• 미국·중국·인도에 비해 인구수 대비 공학자 배출률이 높으며, 지난 10년간 AI 분야
인재 개발	졸업자 수가 증가
근제 제공	• '21년 AI 분야 박사 학위 취득자 중 여성 비율이 12%에 불과한 것으로 나타나, AI
	교육 분야 성비 불균형이 미래 인력 양성을 저해할 수 있다는 우려 부각

- 한국은 지정학적 변동 취약성, 대기업 특허 집중, 미숙한 AI 스타트업 생태계, 인구 감소 등에 직면해 있으며 지역 긴장 고조로 수출 주도 모델에 압력이 가해지고 있는 상황
 - 미국 정부와 한국 정부, 업계 선도 기업 간 긴밀한 협력을 통해 미국, 네덜란드, 일본의 수출 규제가 반도체 공급망 내 한국 기업에 미치는 부정적 영향을 최소화하는 것이 중요
 - 그 외 핵심 신기술 분야 전문가 육성, 학생·과학자·공학자·기업가 사이의 연계 강화 프로그램 마련 등 한·미 양국의 협력 촉진 필요

(참고: CSET, Assessing South Korea's Al Ecosystem, 2023.08)

정책 동향

캐나다 서스캐처윈 주 소형모듈윈자로 개발 지원 (加 NRCan, 8.19)

- 캐나다 연방정부가 저가 청정 전력의 안정 공급을 목적으로 서스캐처원 주 소형모듈원자로 (SMR) 개발·보급 프로젝트 자금 지원을 승인
 - 캐나다 정부는 글로벌 넷제로 경제 전환에서 자국의 경쟁 우위 확립 및 기후 목표 달성을 위해 무배출(non-emitting) 에너지를 확대해야 한다고 평가하고, SMR 등의 차세대 원자력 프로젝트를 포함한 무배출 전력 인프라 프로젝트를 추진
 - 무배출 에너지를 생성하는 SMR은 지방 전력망 및 고배출 산업의 탈탄소화 측면에서 중요한 역할을 담당할 수 있으며, 벽지 지역사회의 디젤 전력 의존도 저감을 지원 가능
 - ※ 300 메가와트 SMR이 약 30만 가구에 무공해 전력을 공급할 수 있을 것으로 추정
 - 캐나다 원자력 산업은 약 7만 5,000명의 종사자를 고용하고 있으며, 수십 년의 경험을 바탕으로 SMR 기술 개발·보급 선도국으로 발돋움할 수 있는 유리한 위치를 확보
- 천연자원부(NRCan)는 서스캐처원 주 전력회사 SaskPower가 주도하는 SMR 개발 사업에 최대 7,400만 달러의 연방 기금을 지원할 방침으로, 해당 자금은 사전 엔지니어링 작업, 기술 연구, 환경 평가, 규제 연구, 지역사회·원주민 참여 등 프로젝트 진행에 투입될 예정
 - ※ SaskPower는 '30년대 중반 도입 목표로 GE-Hitachi의 소형모율원자로 BWRX-300을 선정
 - 천연자원부 '전력 사전 개발 프로그램*'에서 최대 5,000만 달러, 환경기후변화부(ECCC)의 미래전력기금*에서 2,400만 달러를 동 사업에 지원할 방침
 - * (Electricity Predevelopment Program) 주 간 송전망 건설 프로젝트, SMR 등 국가적으로 중요한 청정 전력 프로젝트의 사전 개발 활동을 지원하는 2억 5,000만 달러 규모 프로그램
 - ** (Future Electricity Fund) '50년 넷제로 경제 달성을 뒷받침할 청정 에너지 프로젝트, 에너지 효율 기술 및 기타 이니셔티브에 오염 부담금(pollution pricing) 수익을 환원하기 위한 기금
- SaskPower는 '34년 가동을 목표로 '30년 SMR 1호기가 착공되고, 이르면 '34년 추가 시설 건설이 시작될 것으로 전망
 - 해당 프로젝트를 통해 약 1,700개의 직간접 일자리가 창출되고, SMR 시설 수명 60년 동안 국내총생산 88억 달러, 임금 56억 달러, 세수 29억 달러가 증가할 것으로 추산
 - ※ 청정 전력망으로의 전환을 통해 온실가스뿐만 아니라 질소 및 황산화물, 미세먼지, 수은 등의 대기오염 물질을 저감해 국민 건강 측면에서 편익 제공 가능
- (참고 : Natural Resources Canada, Government of Canada Announces Federal Support for Small Modular Reactor (SMR) Development in Saskatchewan, 2023.08.19.)

인플레이션 감축법(IRA)의 녹색 경제 영향 검토 (WEF, 8.21)

0

- 세계경제포럼(WEF)이 녹색 경제 측면에서 「인플레이션 감축법(IRA)」('22.8)이
 미친 영향과 주요 성과를 검토
 - ※ 물가 상승 완화를 목적으로 제정된 「인플레이션 감축법(IRA)」은 미국 내 녹색 에너지 전환을 가속화하고 지속 가능성 관련 조치를 강화하기 위한 수십억 달러의 투자 및 세금 감면 조항을 포함
 - IRA 시행으로 전기차와 열 펌프 판매량이 급증하고 녹색 일자리가 대거 창출되는 등 미국 내 녹색 혁명을 가속화되고 있다는 평가 획득

■ IRA 시행 1년간의 주요 성과 ■

구분	주요 내용
녹색 일자리 창출	 지난 12개월 간 전국적으로 17만 개 이상의 신규 녹색 일자리가 창출된 것으로 집계 비영리 단체 Climate Power에 따르면, '23.7월까지 전국적으로 270개 이상의 청정 에너지 프로젝트가 시행 풍력 터빈 제조, 태양광 발전 인프라, 배터리 설비, 미국 최초의 수전해 생산 설비 투자 등을 비롯한 신규 투자 규모가 2,780억 달러에 도달 ※ (예) ▲(덴마크 풍력 터빈 제공기업 Vestas) 콜로라도에 4,000만 달러 규모의 최신 풍력 터빈 제조 계획 발표 ▲(일본 Toyota) 노스캐롤라이나 전기차 배터리 제조 시설에 25억 달러 투자 방침 일부 전문가에 따르면「인플레이션 감축법」이 '30년 미국 온실가스 배출량 감축 예상치를 20%에서 최대 42%까지 상향시킬 수 있을 만큼 관련 조치를 활성화한 것으로 분석
전기차 및 열 펌프 수요 증가	• 한 대당 최대 7,500 달러의 전기차 세액 공제 혜택으로 '23.1분기 전기차 판매량이 54% 급증 - 세액 공제 및 특정 금액 이하 자동차에 지급되는 보조금 정책*을 통해 주요 전기차 제조업체의 가격 인하를 유도 * 5만 5,000 달러 미만 승용차, 8만 달러 미만 SUV에 보조금 지급 - 미국 내 제조를 의무화하는 미국산 우선구매(Made in America) 규정 또한 전기차 배터리 제조 역량의 급속한 확대를 촉진 • 옥상 태양광 발전・열 펌프 등 가정의 에너지 효율 설비 설치에 보조금이 지원되면서 미국 열 펌프 판매량이 '22년 11% 상승한 데 이어, '23년 15%의 증가세를 기록할 것으로 예상 ※ '22년 처음으로 열 펌프 판매량이 가정용 가스 보일러 판매량을 상회
환경 보호	 환경을 보호하고 정화하기 위한 환경보호청(EPA) 조치에 IRA 자금 지원 ※ ▲지역사회 공기 모니터링 확대에 자금 지원(3,000만 달러) 및 대기 질 개선을 위한 청정 공기 보조금 제공(2,500만 달러) ▲주 및 지방 정부의 기후 실행계획 개발 지원(2억 5,000만 달러) ▲기후 위기를 겪고 있는 저소득 지역사회를 지원하기 위한 환경 정의 프로젝트 지원(6억 5,000만 달러) 해안 지역사회가 기후 변화의 영향에 보다 탄력적으로 대응할 수 있도록 뒷받침하는 해양대기청(NOAA) 지원 기금(5억 달러 이상) 중 일부를 IRA를 통해 충당

(참고 : WEF, The US Inflation Reduction Act one year on - what's been achieved for the green economy?, 2023.08.21.)

EU의 경제안보전략 방향 점검 (日 미즈호은행, 8.16)

- 일본 미즈호은행이 EU 최초의 「경제안보전략」('23.6)을 검토하고. '디리스킹'*의 필요성과 회원국별로 상이한 대중(對中) 접근방식을 고찰
 - * (de-risking) '중국'을 경계하고자 하는 서방 진영의 대중 접근방식으로 우르술라 폰 데어 라이엔 EU 집행 위원장의 대중 정책 관련 연설에서('23.3) 언급되며 주목
 - 코로나19 팬데믹과 러-우 전쟁을 통해 유럽 공급망과 에너지 안보 취약성이 드러나면서. 중국·러시아 등 특정 국가에 대한 과도한 경제 의존도 저감(de-risking)을 목표로 하는 EU 최초의 「경제안전보장전략」이 수립
- ◎ 「경제안전보장전략」은 공급망, 사이버·물리 보안, 기술 유출, 경제 의존 무기화 등 4대 리스크에 대응하기 위한 3대 핵심 요소(보호, 진흥, 연계)와 2대 추진 원칙을 제시하며, 경제안보 '보호'와 경제 '개방성'의 균형을 강조
 - ※ 2대 추진 원칙을 통해 ▲EU의 경제안전보장 수단의 대상이 되는 품목·분야를 한정하여(정밀) ▲각 과제에 따라 균형 잡힌 조치를 마련해야(균형) 한다고 강조

③기술 유출·안전보장 리스크 ②중요 인프라의 사이버·물리 보안 리스크 ④경제 의존 무기화· 경제적 위압 리스크 ①공급망 강화 Promote (진흥) 3대 핵심 요소 Protect (보호) Partner (연계) ③ Proportionallity (교형) 2대 추진 원칙

■ EU「경제안보전략」개요 ■

- EU가 역내 시장 통합. FTA 체결 등을 통한 자유무역을 바탕으로 발전해 온 만큼 보호주의와 같은 경제안보 개념에 반대하는 회원국이 존재하므로, '경제의 개방성 역동성을 최대한 유지하면서' 경제안보 리스크를 방지하기 위한 조치임을 부각
- ※ 동 전략이 수출 및 대외투자 규제 강화를 지향하고 있지만, 대중 자세나 경제안보 리스크 인식이 회원국 간 일치하지 않는 데다 집행위로의 경제안보 정책 분야 권한 이양 수준도 합의되지 못한 상황
- 결론적으로. EU 공통의 경제안보전략이기는 하지만 구체적 조치에 관한 최종결정권은 EU 회원국이 보유하고, 각각의 제도 도입도 국가 재량에 맡기는 형태가 될 가능성이 농후
- 비즈니스 측면에서도 EU의 '디리스킹' 방침에 따라 기존 대중 사업 유지를 부정적으로 평가하는 기업이 증가하는 한편, 폭스바겐의 대중 전략(in China for China) 추진과 같이 중국 시장에서 활로를 찾으려는 기업도 여전히 존재
- (참고: みずほ銀行, EU初の「経済安全保障戦略」 ~ 背景にある「デリスキング」の必要性と加盟国の異なる対中 姿勢, 2023.08.16.)

일본의 반도체 산업 활성화 방안 (美 CSIS, 8.25)

0

- 미국 전략국제문제연구소(CSIS)가 일본 반도체 산업의 국제 경쟁력 회복을 위한 주요 정책 기조를 점검
 - 일본 반도체 산업의 글로벌 생산량 점유율이 '80년대 말 50% 이상에서 '22년 9%로 하락하였고, 산업 경쟁력 역시 글로벌 선도 기업보다 약 10년 정도 뒤처진 것으로 분석
 - 일본 정부는 반도체 산업 활성화 및 경쟁력 제고를 목적으로 「반도체·디지털 산업 전략」('21.6)을 발표하는 한편, '90년대까지 추진해 왔던 반도체 자급 정책에서 탈피하여 국제 협력을 통한 글로벌 공급망 구축을 도모

" 반도체·디지털 산업 전략 주요 내용 "

핵심 전략	주요 활동
미-일 파트너십 구축	• IBM 및 유럽 연구기관 IMEC과의 협력에 기반한 일본 기업 컨소시엄 Rapidus 발족을 시작으로, 미-일 파트너십을 통해 '20년대 후반까지 2nm 이하 차세대 칩 설계·생산 역량 증진
획기적인 미래 반도체 기술 개발	• 첨단 칩 연구를 위한 정부 출연 R&D 센터 '첨단반도체기술센터(LSTC)' 설립 ※ 미국의 국립반도체기술센터(NSTC)를 모델로 한 공공 연구센터로 최첨단 반도체 회로 설계 기술, 신속한 양산 기술, 3D 패키징 기술 확립 등을 추진
신규 칩 제조 기지 구축	일본 정부가 대만 TSMC와 일본 기업 Sony, 자동차 부품 제조업체 Denso 간의 합작회사(JASM)* 설립을 촉진 * (Japan Advanced Semiconductor Manufacturing) 현재 구마모토 현에 웨이퍼 제조 공장 건설을 진행하고 있으며, 두 번째 TSMC 팹 구축도 검토 중
칩 제조 보조금 지급	 국내외 제조업체가 지정된 유형의 반도체 소자(전력 소자, 마이크로 컨트롤러, 아날로그 소자 등), 장비, 재료, 원자재 생산 시 발생하는 자본 비용의 최대 1/3을 보조금으로 지급 ※ (보조금 수혜 조건) ▲최소 10년간의 국내 생산 진행 ▲글로벌 공급 부족 시 내수 출하 우선 실시

- 해외 파트너와의 협력이 산업 활성화를 위한 필수 요소로 대두함에 따라 일본-미국 간 '상무·산업 파트너십(JUCIP)'*이 체결되고 대만 TSMC와의 협력이 심화
 - * (Japan-U.S. Commercial and Industrial Partnership) 양국 산업 경쟁력 및 공급망 강화, 기후변화 등에 대응
 - JUCIP 1차 회의에서 양국은 복원력 있는 반도체 공급망 구축 목표와 전략 측면의 협력 비전을 제시하는 「반도체 협력에 관한 기본 원칙」에 합의('22.5.4)
 - ※ 그 외 ▲미·일 정상회담을 통해 기본 원칙 이행을 위한 차세대 반도체 개발 공동 태스크포스 출범 ('22.5.23) ▲미·일 경제정책위원회 회의에서 핵심 기술에 대한 공동 연구개발(R&D) 추진에 합의('22.7)
 - TSMC의 경우 일본설계센터 설립('19), 반도체 파운드리 합작 투자('21.3), 구마모토 2차 팹 건설 계획 발표('23.2) 등을 통해 일본 내 확고한 입지 확립

(참고: CSIS, Japan Seeks to Revitalize Its Semiconductor Industry, 2023.08.25.)

유망기술 클리핑

분류	기술명	주요 내용	출처
분류 AI	뇌 신호 음성 구현 인터페이스	 뇌졸중 환자의 뇌 신호를 인식하여 디지털 아바타를 통해 음성과 표정으로 구현하는 AI 인터페이스 253개의 전극을 뇌 표면에 이식하여 안면, 혀 등의 근육으로 전달되는 신호를 컴퓨터에 연결 AI 신호 해독 알고리즘 훈련 시, 전체 단어를 인식시키는 대신 음소로부터 단어를 해독하는 방식을 채택함으로써, AI 학습량을 축소해 시스템 정확도와 속도를 제고 음성 합성 알고리즘에 환자의 투병 이전 음성 녹음본을 적용해 목소리를 구현하고, 안면 근육 움직임 시뮬레이션을 애니메이션으로 변환하여 뇌 신호에 따른 아바타의 감정을 표현 추후 물리적 연결을 제거한 무선 버전의 BCI 개발을 추진하여 뇌졸중 환자의 사회적 상호작용을 지원할 계획 	daily
	비행운 감축 경로 연산 AI	 고도, 날씨, 습도 조건을 고려하여 비행운 저감 경로를 제시하는 인공지능 모델 ※지구 복사열의 우주 방출을 저해하는 비행운은 지구 온난화의 주요 요인으로 지목 공기가 희박한 최대 고도에서 비행운이 가장 쉽게 생성되기 때문에 고도를 낮춰 운행하도록 유도 ※ 다만, 연료 연소를 가장 효율적으로 관리할 수 있는 최대 고도비행을 지양하므로 연료비가 소폭(약 2%) 증가 해당 경로를 따르는 70회 테스트 비행 결과 Google 위성 이미지 기준 약 54%까지 비행운 범위를 축소 가능 복사열을 대기 중에 가둬 지구 온난화를 가속화하는 비행운의 온실효과를 완화할 수 있을 것으로 기대 	Techxplor (8.15)
소재	커피 폐기물 콘크리트	 커피 제조 과정에서 발생하는 폐기물을 활용하여 강도를 높인 콘크리트 섭씨 350도의 열분해 공정을 통해 커피 폐기물을 바이오차*로 전환하여 콘크리트 배합용 모래 일부를 대체 	Science daily (8.22)

Ho

H2 _	기스머	70 JIIS	조 된
분류	기술명	주요 내용	출처
		* (Biochar) 생태계 순환 과정을 구성하는 식물, 동물등의 유기체를 사용해 제조된 숯	
		- 기존 공정 대비 콘크리트의 강도 약 30% 상승 - 유기 폐기물 처리로 발생되는 다량의 온실가스 감축 및 천연모래 채취로 인해 파괴되는 환경 보존 효과 발생	
		- 건축재, 도로 포장재, 친환경 장식용 제품 등 콘크리트 산업의 가치 창출을 제고 가능	
		• 화석 연료 발전에 사용되는 증기 응축기의 열전달 효율을 개선하는 코팅 방식	
에너지	열전달 개선 코팅 기법	- 소수성(hydrophobic)을 띠는 불소화 다이아몬드형 탄소를 코팅함으로써, 증기 응결 과정에서 발생하는 물이 열전달을 증진할 수 있도록 뒷받침 - 기존 공정 대비 열전달 효율을 약 20배 향상시키는 것으로 분석되는데, 이는 전체 공정 효율 약 2% 상승에 해당하는 수치 - 공정 효율 증가로 매년 4억 6,000만 톤의	Techxplor (8.22)
		이산화탄소 배출량과 2조 갤런의 물 사용량을 감축할 것으로 기대	
반도체	산화갈륨 기반 메모리	급격한 온도 변화와 방사선 노출에 견딜 수 있는 산화갈륨 기반 메모리 장치 절연 물질로 얇게 둘러쌓인 질화티타늄 조각이 50nm 두께의 산화갈륨 층 위에서 플로팅 게이트* 역할을 담당하며 전자를 포획하여 데이터를 저장 * (Floating gate) 절연체 막으로 둘러싸여 전자를 가두고 데이터를 저장하는 폐쇄 공간 갈륨 산화물의 넓은 밴드갭*을 바탕으로 고온에서도 메모리 장치의 데이터를 안정적으로 유지 가능 * (band gap) 전자의 자유로운 활동에 필요한 에너지 척도 방사선 및 막대한 온도 변화에 노출되는 우주 탐사선 등에 활용 가능	Techxplor (8.16)
환경	안개 담수화 기술	 안개 포집 및 오염 물질 분해·제거를 통해 식수를 공급하는 안개 담수화 기술 ※ 페루, 볼리비아 등의 안개 다량 발생 지역에서 공기 중물방울을 포집하여 생활용수로 사용하는 가운데, 안개에포함된 대기 오염물질 제거 필요성 부각 특정 고분자와 이산화티타늄 혼합물로 코팅된금속 와이어 매쉬로 물방울을 포집한 후, 이산화티타늄를 촉매를 활용해 오염 물질을 분해 	Science daily (8.16)

분류	기술명	주요 내용	출처
		 소량의 자외선으로* 촉매를 활성화할 수 있어 유지·관리가 용이한 것이 특징 * 30분 햇빛 노출로 촉매를 24시간 활성화 실험실 테스트 결과 인공 안개에서 8%의 물을 포집하고, 94%의 유기화합물을 분해하는 데 성공 	
	수질 정화용스마트 러스트	 기름과 미세 플라스틱, 각종 오염 물질을 정화할 수 있는 특수 산화철 나노 입자로서, '스마트 러스트(smart rust)'로 지칭 스마트 러스트에 오염물질을 흡착시킨 후 자석으로 입자와 오염물질을 함께 제거하는 방식 스마트 러스트 입자를 코팅하는 재료에 따라 나노·마이크로 플라스틱, 오일, 글리포세이트 제초제, 에스트로겐 호르몬 등 다양한 물질을 흡착 가능 산화철 나노입자에 포스폰산 분자(phosphonic acid)를 부착하여 나노 입자 표면의 특정을 조정함으로써 수중 오염 물질 흡착 기능을 강화 무독성에 제조 비용이 저렴하고 표면적이 넓어 여러 차례 재사용 가능 호르몬과 같이 환경에 영향을 미칠 수 있는 미량의 오염 물질을 제거할 뿐만 아니라, 수질 정화 비용을 절감할 수 있을 것으로 기대 	Science daily (8.16)
	직접공기포집 효율성 향상 장치	 전해조와 연료전지를 양방향 작동시켜 에너지 소비를 감축한 탄소포집 장치 단일 장치에서 전해조와 연료전지를 양방향으로 작동시켜 투입 요소와 산출물의 순환 공정을 구축함으로써, 탄소 포집의 효율성을 제고 ※ 기존 공정은 대기 중 CO2를 탄산염 형태로 포집 후 천연 가스를 연소해 탄산염을 CO2 가스로 전이시켜 저장하기 때문에 상당한 양의 탄소를 배출 천연가스 가열 단계를 생략해 공정 에너지 소비량을 감축할 수 있으며, 천연가스가 아닌 전기를 사용하므로 저탄소 에너지원을 활용 가능 분석 결과 기존 공정 대비 포집된 CO2 1톤당 CO2 발생량이 약 40배 가량 감소 CO2 배출량이 많은 정제, 철강, 시멘트, 전력 산업에서 활용될 수 있을 것으로 기대 	Techxplor (8.10)

KJa'T 산업기술 동향 워치

